Spaces:
Running
on
T4
Running
on
T4
# Copyright 2020 The HuggingFace Team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import os | |
import time | |
from dataclasses import dataclass, field | |
from enum import Enum | |
from typing import Dict, List, Optional, Union | |
import torch | |
from filelock import FileLock | |
from torch.utils.data import Dataset | |
from ...models.auto.modeling_auto import MODEL_FOR_QUESTION_ANSWERING_MAPPING | |
from ...tokenization_utils import PreTrainedTokenizer | |
from ...utils import logging | |
from ..processors.squad import SquadFeatures, SquadV1Processor, SquadV2Processor, squad_convert_examples_to_features | |
logger = logging.get_logger(__name__) | |
MODEL_CONFIG_CLASSES = list(MODEL_FOR_QUESTION_ANSWERING_MAPPING.keys()) | |
MODEL_TYPES = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) | |
class SquadDataTrainingArguments: | |
""" | |
Arguments pertaining to what data we are going to input our model for training and eval. | |
""" | |
model_type: str = field( | |
default=None, metadata={"help": "Model type selected in the list: " + ", ".join(MODEL_TYPES)} | |
) | |
data_dir: str = field( | |
default=None, metadata={"help": "The input data dir. Should contain the .json files for the SQuAD task."} | |
) | |
max_seq_length: int = field( | |
default=128, | |
metadata={ | |
"help": ( | |
"The maximum total input sequence length after tokenization. Sequences longer " | |
"than this will be truncated, sequences shorter will be padded." | |
) | |
}, | |
) | |
doc_stride: int = field( | |
default=128, | |
metadata={"help": "When splitting up a long document into chunks, how much stride to take between chunks."}, | |
) | |
max_query_length: int = field( | |
default=64, | |
metadata={ | |
"help": ( | |
"The maximum number of tokens for the question. Questions longer than this will " | |
"be truncated to this length." | |
) | |
}, | |
) | |
max_answer_length: int = field( | |
default=30, | |
metadata={ | |
"help": ( | |
"The maximum length of an answer that can be generated. This is needed because the start " | |
"and end predictions are not conditioned on one another." | |
) | |
}, | |
) | |
overwrite_cache: bool = field( | |
default=False, metadata={"help": "Overwrite the cached training and evaluation sets"} | |
) | |
version_2_with_negative: bool = field( | |
default=False, metadata={"help": "If true, the SQuAD examples contain some that do not have an answer."} | |
) | |
null_score_diff_threshold: float = field( | |
default=0.0, metadata={"help": "If null_score - best_non_null is greater than the threshold predict null."} | |
) | |
n_best_size: int = field( | |
default=20, metadata={"help": "If null_score - best_non_null is greater than the threshold predict null."} | |
) | |
lang_id: int = field( | |
default=0, | |
metadata={ | |
"help": ( | |
"language id of input for language-specific xlm models (see" | |
" tokenization_xlm.PRETRAINED_INIT_CONFIGURATION)" | |
) | |
}, | |
) | |
threads: int = field(default=1, metadata={"help": "multiple threads for converting example to features"}) | |
class Split(Enum): | |
train = "train" | |
dev = "dev" | |
class SquadDataset(Dataset): | |
""" | |
This will be superseded by a framework-agnostic approach soon. | |
""" | |
args: SquadDataTrainingArguments | |
features: List[SquadFeatures] | |
mode: Split | |
is_language_sensitive: bool | |
def __init__( | |
self, | |
args: SquadDataTrainingArguments, | |
tokenizer: PreTrainedTokenizer, | |
limit_length: Optional[int] = None, | |
mode: Union[str, Split] = Split.train, | |
is_language_sensitive: Optional[bool] = False, | |
cache_dir: Optional[str] = None, | |
dataset_format: Optional[str] = "pt", | |
): | |
self.args = args | |
self.is_language_sensitive = is_language_sensitive | |
self.processor = SquadV2Processor() if args.version_2_with_negative else SquadV1Processor() | |
if isinstance(mode, str): | |
try: | |
mode = Split[mode] | |
except KeyError: | |
raise KeyError("mode is not a valid split name") | |
self.mode = mode | |
# Load data features from cache or dataset file | |
version_tag = "v2" if args.version_2_with_negative else "v1" | |
cached_features_file = os.path.join( | |
cache_dir if cache_dir is not None else args.data_dir, | |
f"cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{version_tag}", | |
) | |
# Make sure only the first process in distributed training processes the dataset, | |
# and the others will use the cache. | |
lock_path = cached_features_file + ".lock" | |
with FileLock(lock_path): | |
if os.path.exists(cached_features_file) and not args.overwrite_cache: | |
start = time.time() | |
self.old_features = torch.load(cached_features_file) | |
# Legacy cache files have only features, while new cache files | |
# will have dataset and examples also. | |
self.features = self.old_features["features"] | |
self.dataset = self.old_features.get("dataset", None) | |
self.examples = self.old_features.get("examples", None) | |
logger.info( | |
f"Loading features from cached file {cached_features_file} [took %.3f s]", time.time() - start | |
) | |
if self.dataset is None or self.examples is None: | |
logger.warning( | |
f"Deleting cached file {cached_features_file} will allow dataset and examples to be cached in" | |
" future run" | |
) | |
else: | |
if mode == Split.dev: | |
self.examples = self.processor.get_dev_examples(args.data_dir) | |
else: | |
self.examples = self.processor.get_train_examples(args.data_dir) | |
self.features, self.dataset = squad_convert_examples_to_features( | |
examples=self.examples, | |
tokenizer=tokenizer, | |
max_seq_length=args.max_seq_length, | |
doc_stride=args.doc_stride, | |
max_query_length=args.max_query_length, | |
is_training=mode == Split.train, | |
threads=args.threads, | |
return_dataset=dataset_format, | |
) | |
start = time.time() | |
torch.save( | |
{"features": self.features, "dataset": self.dataset, "examples": self.examples}, | |
cached_features_file, | |
) | |
# ^ This seems to take a lot of time so I want to investigate why and how we can improve. | |
logger.info( | |
f"Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]" | |
) | |
def __len__(self): | |
return len(self.features) | |
def __getitem__(self, i) -> Dict[str, torch.Tensor]: | |
# Convert to Tensors and build dataset | |
feature = self.features[i] | |
input_ids = torch.tensor(feature.input_ids, dtype=torch.long) | |
attention_mask = torch.tensor(feature.attention_mask, dtype=torch.long) | |
token_type_ids = torch.tensor(feature.token_type_ids, dtype=torch.long) | |
cls_index = torch.tensor(feature.cls_index, dtype=torch.long) | |
p_mask = torch.tensor(feature.p_mask, dtype=torch.float) | |
is_impossible = torch.tensor(feature.is_impossible, dtype=torch.float) | |
inputs = { | |
"input_ids": input_ids, | |
"attention_mask": attention_mask, | |
"token_type_ids": token_type_ids, | |
} | |
if self.args.model_type in ["xlm", "roberta", "distilbert", "camembert"]: | |
del inputs["token_type_ids"] | |
if self.args.model_type in ["xlnet", "xlm"]: | |
inputs.update({"cls_index": cls_index, "p_mask": p_mask}) | |
if self.args.version_2_with_negative: | |
inputs.update({"is_impossible": is_impossible}) | |
if self.is_language_sensitive: | |
inputs.update({"langs": (torch.ones(input_ids.shape, dtype=torch.int64) * self.args.lang_id)}) | |
if self.mode == Split.train: | |
start_positions = torch.tensor(feature.start_position, dtype=torch.long) | |
end_positions = torch.tensor(feature.end_position, dtype=torch.long) | |
inputs.update({"start_positions": start_positions, "end_positions": end_positions}) | |
return inputs | |