Spaces:
Running
on
T4
Running
on
T4
# Copyright 2022 The Impira Team and the HuggingFace Team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import re | |
from typing import List, Optional, Tuple, Union | |
import numpy as np | |
from ..utils import ( | |
ExplicitEnum, | |
add_end_docstrings, | |
is_pytesseract_available, | |
is_torch_available, | |
is_vision_available, | |
logging, | |
) | |
from .base import PIPELINE_INIT_ARGS, ChunkPipeline | |
from .question_answering import select_starts_ends | |
if is_vision_available(): | |
from PIL import Image | |
from ..image_utils import load_image | |
if is_torch_available(): | |
import torch | |
from ..models.auto.modeling_auto import MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES | |
TESSERACT_LOADED = False | |
if is_pytesseract_available(): | |
TESSERACT_LOADED = True | |
import pytesseract | |
logger = logging.get_logger(__name__) | |
# normalize_bbox() and apply_tesseract() are derived from apply_tesseract in models/layoutlmv3/feature_extraction_layoutlmv3.py. | |
# However, because the pipeline may evolve from what layoutlmv3 currently does, it's copied (vs. imported) to avoid creating an | |
# unnecessary dependency. | |
def normalize_box(box, width, height): | |
return [ | |
int(1000 * (box[0] / width)), | |
int(1000 * (box[1] / height)), | |
int(1000 * (box[2] / width)), | |
int(1000 * (box[3] / height)), | |
] | |
def apply_tesseract(image: "Image.Image", lang: Optional[str], tesseract_config: Optional[str]): | |
"""Applies Tesseract OCR on a document image, and returns recognized words + normalized bounding boxes.""" | |
# apply OCR | |
data = pytesseract.image_to_data(image, lang=lang, output_type="dict", config=tesseract_config) | |
words, left, top, width, height = data["text"], data["left"], data["top"], data["width"], data["height"] | |
# filter empty words and corresponding coordinates | |
irrelevant_indices = [idx for idx, word in enumerate(words) if not word.strip()] | |
words = [word for idx, word in enumerate(words) if idx not in irrelevant_indices] | |
left = [coord for idx, coord in enumerate(left) if idx not in irrelevant_indices] | |
top = [coord for idx, coord in enumerate(top) if idx not in irrelevant_indices] | |
width = [coord for idx, coord in enumerate(width) if idx not in irrelevant_indices] | |
height = [coord for idx, coord in enumerate(height) if idx not in irrelevant_indices] | |
# turn coordinates into (left, top, left+width, top+height) format | |
actual_boxes = [] | |
for x, y, w, h in zip(left, top, width, height): | |
actual_box = [x, y, x + w, y + h] | |
actual_boxes.append(actual_box) | |
image_width, image_height = image.size | |
# finally, normalize the bounding boxes | |
normalized_boxes = [] | |
for box in actual_boxes: | |
normalized_boxes.append(normalize_box(box, image_width, image_height)) | |
if len(words) != len(normalized_boxes): | |
raise ValueError("Not as many words as there are bounding boxes") | |
return words, normalized_boxes | |
class ModelType(ExplicitEnum): | |
LayoutLM = "layoutlm" | |
LayoutLMv2andv3 = "layoutlmv2andv3" | |
VisionEncoderDecoder = "vision_encoder_decoder" | |
class DocumentQuestionAnsweringPipeline(ChunkPipeline): | |
# TODO: Update task_summary docs to include an example with document QA and then update the first sentence | |
""" | |
Document Question Answering pipeline using any `AutoModelForDocumentQuestionAnswering`. The inputs/outputs are | |
similar to the (extractive) question answering pipeline; however, the pipeline takes an image (and optional OCR'd | |
words/boxes) as input instead of text context. | |
Example: | |
```python | |
>>> from transformers import pipeline | |
>>> document_qa = pipeline(model="impira/layoutlm-document-qa") | |
>>> document_qa( | |
... image="https://huggingface.co/spaces/impira/docquery/resolve/2359223c1837a7587402bda0f2643382a6eefeab/invoice.png", | |
... question="What is the invoice number?", | |
... ) | |
[{'score': 0.425, 'answer': 'us-001', 'start': 16, 'end': 16}] | |
``` | |
Learn more about the basics of using a pipeline in the [pipeline tutorial](../pipeline_tutorial) | |
This document question answering pipeline can currently be loaded from [`pipeline`] using the following task | |
identifier: `"document-question-answering"`. | |
The models that this pipeline can use are models that have been fine-tuned on a document question answering task. | |
See the up-to-date list of available models on | |
[huggingface.co/models](https://huggingface.co/models?filter=document-question-answering). | |
""" | |
def __init__(self, *args, **kwargs): | |
super().__init__(*args, **kwargs) | |
if self.tokenizer is not None and not self.tokenizer.__class__.__name__.endswith("Fast"): | |
raise ValueError( | |
"`DocumentQuestionAnsweringPipeline` requires a fast tokenizer, but a slow tokenizer " | |
f"(`{self.tokenizer.__class__.__name__}`) is provided." | |
) | |
if self.model.config.__class__.__name__ == "VisionEncoderDecoderConfig": | |
self.model_type = ModelType.VisionEncoderDecoder | |
if self.model.config.encoder.model_type != "donut-swin": | |
raise ValueError("Currently, the only supported VisionEncoderDecoder model is Donut") | |
else: | |
self.check_model_type(MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES) | |
if self.model.config.__class__.__name__ == "LayoutLMConfig": | |
self.model_type = ModelType.LayoutLM | |
else: | |
self.model_type = ModelType.LayoutLMv2andv3 | |
def _sanitize_parameters( | |
self, | |
padding=None, | |
doc_stride=None, | |
max_question_len=None, | |
lang: Optional[str] = None, | |
tesseract_config: Optional[str] = None, | |
max_answer_len=None, | |
max_seq_len=None, | |
top_k=None, | |
handle_impossible_answer=None, | |
timeout=None, | |
**kwargs, | |
): | |
preprocess_params, postprocess_params = {}, {} | |
if padding is not None: | |
preprocess_params["padding"] = padding | |
if doc_stride is not None: | |
preprocess_params["doc_stride"] = doc_stride | |
if max_question_len is not None: | |
preprocess_params["max_question_len"] = max_question_len | |
if max_seq_len is not None: | |
preprocess_params["max_seq_len"] = max_seq_len | |
if lang is not None: | |
preprocess_params["lang"] = lang | |
if tesseract_config is not None: | |
preprocess_params["tesseract_config"] = tesseract_config | |
if timeout is not None: | |
preprocess_params["timeout"] = timeout | |
if top_k is not None: | |
if top_k < 1: | |
raise ValueError(f"top_k parameter should be >= 1 (got {top_k})") | |
postprocess_params["top_k"] = top_k | |
if max_answer_len is not None: | |
if max_answer_len < 1: | |
raise ValueError(f"max_answer_len parameter should be >= 1 (got {max_answer_len}") | |
postprocess_params["max_answer_len"] = max_answer_len | |
if handle_impossible_answer is not None: | |
postprocess_params["handle_impossible_answer"] = handle_impossible_answer | |
return preprocess_params, {}, postprocess_params | |
def __call__( | |
self, | |
image: Union["Image.Image", str], | |
question: Optional[str] = None, | |
word_boxes: Tuple[str, List[float]] = None, | |
**kwargs, | |
): | |
""" | |
Answer the question(s) given as inputs by using the document(s). A document is defined as an image and an | |
optional list of (word, box) tuples which represent the text in the document. If the `word_boxes` are not | |
provided, it will use the Tesseract OCR engine (if available) to extract the words and boxes automatically for | |
LayoutLM-like models which require them as input. For Donut, no OCR is run. | |
You can invoke the pipeline several ways: | |
- `pipeline(image=image, question=question)` | |
- `pipeline(image=image, question=question, word_boxes=word_boxes)` | |
- `pipeline([{"image": image, "question": question}])` | |
- `pipeline([{"image": image, "question": question, "word_boxes": word_boxes}])` | |
Args: | |
image (`str` or `PIL.Image`): | |
The pipeline handles three types of images: | |
- A string containing a http link pointing to an image | |
- A string containing a local path to an image | |
- An image loaded in PIL directly | |
The pipeline accepts either a single image or a batch of images. If given a single image, it can be | |
broadcasted to multiple questions. | |
question (`str`): | |
A question to ask of the document. | |
word_boxes (`List[str, Tuple[float, float, float, float]]`, *optional*): | |
A list of words and bounding boxes (normalized 0->1000). If you provide this optional input, then the | |
pipeline will use these words and boxes instead of running OCR on the image to derive them for models | |
that need them (e.g. LayoutLM). This allows you to reuse OCR'd results across many invocations of the | |
pipeline without having to re-run it each time. | |
top_k (`int`, *optional*, defaults to 1): | |
The number of answers to return (will be chosen by order of likelihood). Note that we return less than | |
top_k answers if there are not enough options available within the context. | |
doc_stride (`int`, *optional*, defaults to 128): | |
If the words in the document are too long to fit with the question for the model, it will be split in | |
several chunks with some overlap. This argument controls the size of that overlap. | |
max_answer_len (`int`, *optional*, defaults to 15): | |
The maximum length of predicted answers (e.g., only answers with a shorter length are considered). | |
max_seq_len (`int`, *optional*, defaults to 384): | |
The maximum length of the total sentence (context + question) in tokens of each chunk passed to the | |
model. The context will be split in several chunks (using `doc_stride` as overlap) if needed. | |
max_question_len (`int`, *optional*, defaults to 64): | |
The maximum length of the question after tokenization. It will be truncated if needed. | |
handle_impossible_answer (`bool`, *optional*, defaults to `False`): | |
Whether or not we accept impossible as an answer. | |
lang (`str`, *optional*): | |
Language to use while running OCR. Defaults to english. | |
tesseract_config (`str`, *optional*): | |
Additional flags to pass to tesseract while running OCR. | |
timeout (`float`, *optional*, defaults to None): | |
The maximum time in seconds to wait for fetching images from the web. If None, no timeout is set and | |
the call may block forever. | |
Return: | |
A `dict` or a list of `dict`: Each result comes as a dictionary with the following keys: | |
- **score** (`float`) -- The probability associated to the answer. | |
- **start** (`int`) -- The start word index of the answer (in the OCR'd version of the input or provided | |
`word_boxes`). | |
- **end** (`int`) -- The end word index of the answer (in the OCR'd version of the input or provided | |
`word_boxes`). | |
- **answer** (`str`) -- The answer to the question. | |
- **words** (`list[int]`) -- The index of each word/box pair that is in the answer | |
""" | |
if isinstance(question, str): | |
inputs = {"question": question, "image": image} | |
if word_boxes is not None: | |
inputs["word_boxes"] = word_boxes | |
else: | |
inputs = image | |
return super().__call__(inputs, **kwargs) | |
def preprocess( | |
self, | |
input, | |
padding="do_not_pad", | |
doc_stride=None, | |
max_seq_len=None, | |
word_boxes: Tuple[str, List[float]] = None, | |
lang=None, | |
tesseract_config="", | |
timeout=None, | |
): | |
# NOTE: This code mirrors the code in question answering and will be implemented in a follow up PR | |
# to support documents with enough tokens that overflow the model's window | |
if max_seq_len is None: | |
max_seq_len = self.tokenizer.model_max_length | |
if doc_stride is None: | |
doc_stride = min(max_seq_len // 2, 256) | |
image = None | |
image_features = {} | |
if input.get("image", None) is not None: | |
image = load_image(input["image"], timeout=timeout) | |
if self.image_processor is not None: | |
image_features.update(self.image_processor(images=image, return_tensors=self.framework)) | |
elif self.feature_extractor is not None: | |
image_features.update(self.feature_extractor(images=image, return_tensors=self.framework)) | |
elif self.model_type == ModelType.VisionEncoderDecoder: | |
raise ValueError("If you are using a VisionEncoderDecoderModel, you must provide a feature extractor") | |
words, boxes = None, None | |
if not self.model_type == ModelType.VisionEncoderDecoder: | |
if "word_boxes" in input: | |
words = [x[0] for x in input["word_boxes"]] | |
boxes = [x[1] for x in input["word_boxes"]] | |
elif "words" in image_features and "boxes" in image_features: | |
words = image_features.pop("words")[0] | |
boxes = image_features.pop("boxes")[0] | |
elif image is not None: | |
if not TESSERACT_LOADED: | |
raise ValueError( | |
"If you provide an image without word_boxes, then the pipeline will run OCR using Tesseract," | |
" but pytesseract is not available" | |
) | |
if TESSERACT_LOADED: | |
words, boxes = apply_tesseract(image, lang=lang, tesseract_config=tesseract_config) | |
else: | |
raise ValueError( | |
"You must provide an image or word_boxes. If you provide an image, the pipeline will automatically" | |
" run OCR to derive words and boxes" | |
) | |
if self.tokenizer.padding_side != "right": | |
raise ValueError( | |
"Document question answering only supports tokenizers whose padding side is 'right', not" | |
f" {self.tokenizer.padding_side}" | |
) | |
if self.model_type == ModelType.VisionEncoderDecoder: | |
task_prompt = f'<s_docvqa><s_question>{input["question"]}</s_question><s_answer>' | |
# Adapted from https://huggingface.co/spaces/nielsr/donut-docvqa/blob/main/app.py | |
encoding = { | |
"inputs": image_features["pixel_values"], | |
"decoder_input_ids": self.tokenizer( | |
task_prompt, add_special_tokens=False, return_tensors=self.framework | |
).input_ids, | |
"return_dict_in_generate": True, | |
} | |
yield { | |
**encoding, | |
"p_mask": None, | |
"word_ids": None, | |
"words": None, | |
"output_attentions": True, | |
"is_last": True, | |
} | |
else: | |
tokenizer_kwargs = {} | |
if self.model_type == ModelType.LayoutLM: | |
tokenizer_kwargs["text"] = input["question"].split() | |
tokenizer_kwargs["text_pair"] = words | |
tokenizer_kwargs["is_split_into_words"] = True | |
else: | |
tokenizer_kwargs["text"] = [input["question"]] | |
tokenizer_kwargs["text_pair"] = [words] | |
tokenizer_kwargs["boxes"] = [boxes] | |
encoding = self.tokenizer( | |
padding=padding, | |
max_length=max_seq_len, | |
stride=doc_stride, | |
return_token_type_ids=True, | |
truncation="only_second", | |
return_overflowing_tokens=True, | |
**tokenizer_kwargs, | |
) | |
# TODO: check why slower `LayoutLMTokenizer` and `LayoutLMv2Tokenizer` don't have this key in outputs | |
# FIXME: ydshieh and/or Narsil | |
encoding.pop("overflow_to_sample_mapping", None) # We do not use this | |
num_spans = len(encoding["input_ids"]) | |
# p_mask: mask with 1 for token than cannot be in the answer (0 for token which can be in an answer) | |
# We put 0 on the tokens from the context and 1 everywhere else (question and special tokens) | |
# This logic mirrors the logic in the question_answering pipeline | |
p_mask = [[tok != 1 for tok in encoding.sequence_ids(span_id)] for span_id in range(num_spans)] | |
for span_idx in range(num_spans): | |
if self.framework == "pt": | |
span_encoding = {k: torch.tensor(v[span_idx : span_idx + 1]) for (k, v) in encoding.items()} | |
if "pixel_values" in image_features: | |
span_encoding["image"] = image_features["pixel_values"] | |
else: | |
raise ValueError("Unsupported: Tensorflow preprocessing for DocumentQuestionAnsweringPipeline") | |
input_ids_span_idx = encoding["input_ids"][span_idx] | |
# keep the cls_token unmasked (some models use it to indicate unanswerable questions) | |
if self.tokenizer.cls_token_id is not None: | |
cls_indices = np.nonzero(np.array(input_ids_span_idx) == self.tokenizer.cls_token_id)[0] | |
for cls_index in cls_indices: | |
p_mask[span_idx][cls_index] = 0 | |
# For each span, place a bounding box [0,0,0,0] for question and CLS tokens, [1000,1000,1000,1000] | |
# for SEP tokens, and the word's bounding box for words in the original document. | |
if "boxes" not in tokenizer_kwargs: | |
bbox = [] | |
for input_id, sequence_id, word_id in zip( | |
encoding.input_ids[span_idx], | |
encoding.sequence_ids(span_idx), | |
encoding.word_ids(span_idx), | |
): | |
if sequence_id == 1: | |
bbox.append(boxes[word_id]) | |
elif input_id == self.tokenizer.sep_token_id: | |
bbox.append([1000] * 4) | |
else: | |
bbox.append([0] * 4) | |
if self.framework == "pt": | |
span_encoding["bbox"] = torch.tensor(bbox).unsqueeze(0) | |
elif self.framework == "tf": | |
raise ValueError("Unsupported: Tensorflow preprocessing for DocumentQuestionAnsweringPipeline") | |
yield { | |
**span_encoding, | |
"p_mask": p_mask[span_idx], | |
"word_ids": encoding.word_ids(span_idx), | |
"words": words, | |
"is_last": span_idx == num_spans - 1, | |
} | |
def _forward(self, model_inputs): | |
p_mask = model_inputs.pop("p_mask", None) | |
word_ids = model_inputs.pop("word_ids", None) | |
words = model_inputs.pop("words", None) | |
is_last = model_inputs.pop("is_last", False) | |
if self.model_type == ModelType.VisionEncoderDecoder: | |
model_outputs = self.model.generate(**model_inputs) | |
else: | |
model_outputs = self.model(**model_inputs) | |
model_outputs = dict(model_outputs.items()) | |
model_outputs["p_mask"] = p_mask | |
model_outputs["word_ids"] = word_ids | |
model_outputs["words"] = words | |
model_outputs["attention_mask"] = model_inputs.get("attention_mask", None) | |
model_outputs["is_last"] = is_last | |
return model_outputs | |
def postprocess(self, model_outputs, top_k=1, **kwargs): | |
if self.model_type == ModelType.VisionEncoderDecoder: | |
answers = [self.postprocess_encoder_decoder_single(o) for o in model_outputs] | |
else: | |
answers = self.postprocess_extractive_qa(model_outputs, top_k=top_k, **kwargs) | |
answers = sorted(answers, key=lambda x: x.get("score", 0), reverse=True)[:top_k] | |
return answers | |
def postprocess_encoder_decoder_single(self, model_outputs, **kwargs): | |
sequence = self.tokenizer.batch_decode(model_outputs["sequences"])[0] | |
# TODO: A lot of this logic is specific to Donut and should probably be handled in the tokenizer | |
# (see https://github.com/huggingface/transformers/pull/18414/files#r961747408 for more context). | |
sequence = sequence.replace(self.tokenizer.eos_token, "").replace(self.tokenizer.pad_token, "") | |
sequence = re.sub(r"<.*?>", "", sequence, count=1).strip() # remove first task start token | |
ret = { | |
"answer": None, | |
} | |
answer = re.search(r"<s_answer>(.*)</s_answer>", sequence) | |
if answer is not None: | |
ret["answer"] = answer.group(1).strip() | |
return ret | |
def postprocess_extractive_qa( | |
self, model_outputs, top_k=1, handle_impossible_answer=False, max_answer_len=15, **kwargs | |
): | |
min_null_score = 1000000 # large and positive | |
answers = [] | |
for output in model_outputs: | |
words = output["words"] | |
starts, ends, scores, min_null_score = select_starts_ends( | |
start=output["start_logits"], | |
end=output["end_logits"], | |
p_mask=output["p_mask"], | |
attention_mask=output["attention_mask"].numpy() | |
if output.get("attention_mask", None) is not None | |
else None, | |
min_null_score=min_null_score, | |
top_k=top_k, | |
handle_impossible_answer=handle_impossible_answer, | |
max_answer_len=max_answer_len, | |
) | |
word_ids = output["word_ids"] | |
for start, end, score in zip(starts, ends, scores): | |
word_start, word_end = word_ids[start], word_ids[end] | |
if word_start is not None and word_end is not None: | |
answers.append( | |
{ | |
"score": float(score), | |
"answer": " ".join(words[word_start : word_end + 1]), | |
"start": word_start, | |
"end": word_end, | |
} | |
) | |
if handle_impossible_answer: | |
answers.append({"score": min_null_score, "answer": "", "start": 0, "end": 0}) | |
return answers | |