liuyizhang
add transformers_4_35_0
1ce5e18
raw
history blame
5.39 kB
# Copyright 2021 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import importlib.util
import json
import os
import warnings
from dataclasses import dataclass, field
import torch
from ..training_args import TrainingArguments
from ..utils import cached_property, is_sagemaker_dp_enabled, logging
logger = logging.get_logger(__name__)
# TODO: should be moved to `utils` after refactoring of SageMakerTrainer
def is_sagemaker_model_parallel_available():
# Get the sagemaker specific mp parameters from smp_options variable.
smp_options = os.getenv("SM_HP_MP_PARAMETERS", "{}")
try:
# Parse it and check the field "partitions" is included, it is required for model parallel.
smp_options = json.loads(smp_options)
if "partitions" not in smp_options:
return False
except json.JSONDecodeError:
return False
# Get the sagemaker specific framework parameters from mpi_options variable.
mpi_options = os.getenv("SM_FRAMEWORK_PARAMS", "{}")
try:
# Parse it and check the field "sagemaker_distributed_dataparallel_enabled".
mpi_options = json.loads(mpi_options)
if not mpi_options.get("sagemaker_mpi_enabled", False):
return False
except json.JSONDecodeError:
return False
# Lastly, check if the `smdistributed` module is present.
return importlib.util.find_spec("smdistributed") is not None
if is_sagemaker_model_parallel_available():
import smdistributed.modelparallel.torch as smp
smp.init()
@dataclass
class SageMakerTrainingArguments(TrainingArguments):
mp_parameters: str = field(
default="",
metadata={"help": "Used by the SageMaker launcher to send mp-specific args. Ignored in SageMakerTrainer"},
)
def __post_init__(self):
super().__post_init__()
warnings.warn(
"`SageMakerTrainingArguments` is deprecated and will be removed in v5 of Transformers. You can use "
"`TrainingArguments` instead.",
FutureWarning,
)
@cached_property
def _setup_devices(self) -> "torch.device":
logger.info("PyTorch: setting up devices")
if torch.distributed.is_available() and torch.distributed.is_initialized() and self.local_rank == -1:
logger.warning(
"torch.distributed process group is initialized, but local_rank == -1. "
"In order to use Torch DDP, launch your script with `python -m torch.distributed.launch"
)
if self.no_cuda:
device = torch.device("cpu")
self._n_gpu = 0
elif is_sagemaker_model_parallel_available():
local_rank = smp.local_rank()
device = torch.device("cuda", local_rank)
self._n_gpu = 1
elif is_sagemaker_dp_enabled():
import smdistributed.dataparallel.torch.torch_smddp # noqa: F401
torch.distributed.init_process_group(backend="smddp", timeout=self.ddp_timeout_delta)
self.local_rank = int(os.getenv("SMDATAPARALLEL_LOCAL_RANK"))
device = torch.device("cuda", self.local_rank)
self._n_gpu = 1
elif self.local_rank == -1:
# if n_gpu is > 1 we'll use nn.DataParallel.
# If you only want to use a specific subset of GPUs use `CUDA_VISIBLE_DEVICES=0`
# Explicitly set CUDA to the first (index 0) CUDA device, otherwise `set_device` will
# trigger an error that a device index is missing. Index 0 takes into account the
# GPUs available in the environment, so `CUDA_VISIBLE_DEVICES=1,2` with `cuda:0`
# will use the first GPU in that env, i.e. GPU#1
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
# Sometimes the line in the postinit has not been run before we end up here, so just checking we're not at
# the default value.
self._n_gpu = torch.cuda.device_count()
else:
# Here, we'll use torch.distributed.
# Initializes the distributed backend which will take care of synchronizing nodes/GPUs
if not torch.distributed.is_initialized():
torch.distributed.init_process_group(backend="nccl", timeout=self.ddp_timeout_delta)
device = torch.device("cuda", self.local_rank)
self._n_gpu = 1
if device.type == "cuda":
torch.cuda.set_device(device)
return device
@property
def world_size(self):
if is_sagemaker_model_parallel_available():
return smp.dp_size()
return super().world_size
@property
def place_model_on_device(self):
return not is_sagemaker_model_parallel_available()
@property
def _no_sync_in_gradient_accumulation(self):
return False