Spaces:
Running
on
T4
Running
on
T4
# coding=utf-8 | |
# Copyright 2018 Salesforce and HuggingFace Inc. team. | |
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
""" PyTorch CTRL model.""" | |
from typing import Optional, Tuple, Union | |
import numpy as np | |
import torch | |
from torch import nn | |
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss | |
from ...modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast, SequenceClassifierOutput | |
from ...modeling_utils import PreTrainedModel | |
from ...pytorch_utils import Conv1D, find_pruneable_heads_and_indices, prune_linear_layer | |
from ...utils import add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings | |
from .configuration_ctrl import CTRLConfig | |
logger = logging.get_logger(__name__) | |
_CONFIG_FOR_DOC = "CTRLConfig" | |
CTRL_PRETRAINED_MODEL_ARCHIVE_LIST = [ | |
"Salesforce/ctrl" | |
# See all CTRL models at https://huggingface.co/models?filter=ctrl | |
] | |
def angle_defn(pos, i, d_model_size): | |
angle_rates = 1 / torch.pow(10000, (2 * (i // 2)) / d_model_size) | |
return pos * angle_rates | |
def positional_encoding(position, d_model_size, dtype): | |
# create the sinusoidal pattern for the positional encoding | |
angle_rads = angle_defn( | |
torch.arange(position, dtype=dtype).unsqueeze(1), | |
torch.arange(d_model_size, dtype=dtype).unsqueeze(0), | |
d_model_size, | |
) | |
sines = torch.sin(angle_rads[:, 0::2]) | |
cosines = torch.cos(angle_rads[:, 1::2]) | |
pos_encoding = torch.cat([sines, cosines], dim=-1) | |
return pos_encoding | |
def scaled_dot_product_attention(q, k, v, mask, attention_mask=None, head_mask=None): | |
# calculate attention | |
matmul_qk = torch.matmul(q, k.permute(0, 1, 3, 2)) | |
dk = k.shape[-1] | |
scaled_attention_logits = matmul_qk / np.sqrt(dk) | |
if mask is not None: | |
nd, ns = scaled_attention_logits.size(-2), scaled_attention_logits.size(-1) | |
scaled_attention_logits += mask[ns - nd : ns, :ns] * -1e4 | |
if attention_mask is not None: | |
# Apply the attention mask | |
scaled_attention_logits = scaled_attention_logits + attention_mask | |
attention_weights = torch.softmax(scaled_attention_logits, dim=-1) | |
# Mask heads if we want to | |
if head_mask is not None: | |
attention_weights = attention_weights * head_mask | |
output = torch.matmul(attention_weights, v) | |
return output, attention_weights | |
class MultiHeadAttention(nn.Module): | |
def __init__(self, d_model_size, num_heads): | |
super().__init__() | |
self.num_heads = num_heads | |
self.d_model_size = d_model_size | |
self.depth = int(d_model_size / self.num_heads) | |
self.Wq = nn.Linear(d_model_size, d_model_size) | |
self.Wk = nn.Linear(d_model_size, d_model_size) | |
self.Wv = nn.Linear(d_model_size, d_model_size) | |
self.dense = nn.Linear(d_model_size, d_model_size) | |
self.pruned_heads = set() | |
def prune_heads(self, heads): | |
attention_head_size = self.d_model_size // self.num_heads | |
if len(heads) == 0: | |
return | |
heads, index = find_pruneable_heads_and_indices(heads, self.num_heads, attention_head_size, self.pruned_heads) | |
# Prune linear layers | |
self.Wq = prune_linear_layer(self.Wq, index) | |
self.Wk = prune_linear_layer(self.Wk, index) | |
self.Wv = prune_linear_layer(self.Wv, index) | |
self.dense = prune_linear_layer(self.dense, index, dim=1) | |
# Update hyper params | |
self.num_heads = self.num_heads - len(heads) | |
self.d_model_size = attention_head_size * self.num_heads | |
self.pruned_heads = self.pruned_heads.union(heads) | |
def split_into_heads(self, x, batch_size): | |
x = x.reshape(batch_size, -1, self.num_heads, self.depth) | |
return x.permute([0, 2, 1, 3]) | |
def forward( | |
self, | |
v, | |
k, | |
q, | |
mask, | |
layer_past=None, | |
attention_mask=None, | |
head_mask=None, | |
use_cache=False, | |
output_attentions=False, | |
): | |
batch_size = q.shape[0] | |
q = self.Wq(q) | |
k = self.Wk(k) | |
v = self.Wv(v) | |
q = self.split_into_heads(q, batch_size) | |
k = self.split_into_heads(k, batch_size) | |
v = self.split_into_heads(v, batch_size) | |
if layer_past is not None: | |
past_key, past_value = layer_past[0], layer_past[1] | |
k = torch.cat((past_key, k), dim=-2) | |
v = torch.cat((past_value, v), dim=-2) | |
if use_cache is True: | |
present = torch.stack((k, v)) | |
else: | |
present = (None,) | |
output = scaled_dot_product_attention(q, k, v, mask, attention_mask, head_mask) | |
scaled_attention = output[0].permute([0, 2, 1, 3]) | |
attn = output[1] | |
original_size_attention = scaled_attention.reshape(batch_size, -1, self.d_model_size) | |
output = self.dense(original_size_attention) | |
outputs = (output, present) | |
if output_attentions: | |
outputs = outputs + (attn,) | |
return outputs | |
def point_wise_feed_forward_network(d_model_size, dff): | |
return nn.Sequential(nn.Linear(d_model_size, dff), nn.ReLU(), nn.Linear(dff, d_model_size)) | |
class EncoderLayer(nn.Module): | |
def __init__(self, d_model_size, num_heads, dff, rate=0.1): | |
super().__init__() | |
self.multi_head_attention = MultiHeadAttention(d_model_size, num_heads) | |
self.ffn = point_wise_feed_forward_network(d_model_size, dff) | |
self.layernorm1 = nn.LayerNorm(d_model_size, eps=1e-6) | |
self.layernorm2 = nn.LayerNorm(d_model_size, eps=1e-6) | |
self.dropout1 = nn.Dropout(rate) | |
self.dropout2 = nn.Dropout(rate) | |
def forward( | |
self, x, mask, layer_past=None, attention_mask=None, head_mask=None, use_cache=False, output_attentions=False | |
): | |
normed = self.layernorm1(x) | |
attn_outputs = self.multi_head_attention( | |
normed, | |
normed, | |
normed, | |
mask, | |
layer_past=layer_past, | |
attention_mask=attention_mask, | |
head_mask=head_mask, | |
use_cache=use_cache, | |
output_attentions=output_attentions, | |
) | |
attn_output = attn_outputs[0] | |
attn_output = self.dropout1(attn_output) | |
out1 = x + attn_output | |
out2 = self.layernorm2(out1) | |
ffn_output = self.ffn(out2) | |
ffn_output = self.dropout2(ffn_output) | |
out2 = out1 + ffn_output | |
outputs = (out2,) + attn_outputs[1:] | |
return outputs | |
class CTRLPreTrainedModel(PreTrainedModel): | |
""" | |
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained | |
models. | |
""" | |
config_class = CTRLConfig | |
base_model_prefix = "transformer" | |
def _init_weights(self, module): | |
"""Initialize the weights.""" | |
if isinstance(module, (nn.Linear, Conv1D)): | |
# Slightly different from the TF version which uses truncated_normal for initialization | |
# cf https://github.com/pytorch/pytorch/pull/5617 | |
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) | |
if module.bias is not None: | |
module.bias.data.zero_() | |
elif isinstance(module, nn.Embedding): | |
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) | |
if module.padding_idx is not None: | |
module.weight.data[module.padding_idx].zero_() | |
elif isinstance(module, nn.LayerNorm): | |
module.bias.data.zero_() | |
module.weight.data.fill_(1.0) | |
CTRL_START_DOCSTRING = r""" | |
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the | |
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads | |
etc.) | |
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. | |
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage | |
and behavior. | |
Parameters: | |
config ([`CTRLConfig`]): Model configuration class with all the parameters of the model. | |
Initializing with a config file does not load the weights associated with the model, only the | |
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. | |
""" | |
CTRL_INPUTS_DOCSTRING = r""" | |
Args: | |
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): | |
`input_ids_length` = `sequence_length` if `past_key_values` is `None` else `past_key_values[0].shape[-2]` | |
(`sequence_length` of input past key value states). Indices of input sequence tokens in the vocabulary. | |
If `past_key_values` is used, only input IDs that do not have their past calculated should be passed as | |
`input_ids`. | |
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.__call__`] and | |
[`PreTrainedTokenizer.encode`] for details. | |
[What are input IDs?](../glossary#input-ids) | |
past_key_values (`Tuple[Tuple[torch.FloatTensor]]` of length `config.n_layers`): | |
Contains pre-computed hidden-states (key and values in the attention blocks) as computed by the model (see | |
`past_key_values` output below). Can be used to speed up sequential decoding. The `input_ids` which have | |
their past given to this model should not be passed as input ids as they have already been computed. | |
attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*): | |
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: | |
- 1 for tokens that are **not masked**, | |
- 0 for tokens that are **masked**. | |
[What are attention masks?](../glossary#attention-mask) | |
token_type_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): | |
Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0, | |
1]`: | |
- 0 corresponds to a *sentence A* token, | |
- 1 corresponds to a *sentence B* token. | |
[What are token type IDs?](../glossary#token-type-ids) | |
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): | |
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, | |
config.max_position_embeddings - 1]`. | |
[What are position IDs?](../glossary#position-ids) | |
head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): | |
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`: | |
- 1 indicates the head is **not masked**, | |
- 0 indicates the head is **masked**. | |
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): | |
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This | |
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the | |
model's internal embedding lookup matrix. | |
use_cache (`bool`, *optional*): | |
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see | |
`past_key_values`). | |
output_attentions (`bool`, *optional*): | |
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned | |
tensors for more detail. | |
output_hidden_states (`bool`, *optional*): | |
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for | |
more detail. | |
return_dict (`bool`, *optional*): | |
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. | |
""" | |
class CTRLModel(CTRLPreTrainedModel): | |
def __init__(self, config): | |
super().__init__(config) | |
self.d_model_size = config.n_embd | |
self.num_layers = config.n_layer | |
self.pos_encoding = positional_encoding(config.n_positions, self.d_model_size, torch.float) | |
self.w = nn.Embedding(config.vocab_size, config.n_embd) | |
self.dropout = nn.Dropout(config.embd_pdrop) | |
self.h = nn.ModuleList( | |
[EncoderLayer(config.n_embd, config.n_head, config.dff, config.resid_pdrop) for _ in range(config.n_layer)] | |
) | |
self.layernorm = nn.LayerNorm(config.n_embd, eps=config.layer_norm_epsilon) | |
# Initialize weights and apply final processing | |
self.post_init() | |
def get_input_embeddings(self): | |
return self.w | |
def set_input_embeddings(self, new_embeddings): | |
self.w = new_embeddings | |
def _prune_heads(self, heads_to_prune): | |
""" | |
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} | |
""" | |
for layer, heads in heads_to_prune.items(): | |
self.h[layer].multi_head_attention.prune_heads(heads) | |
def forward( | |
self, | |
input_ids: Optional[torch.LongTensor] = None, | |
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, | |
attention_mask: Optional[torch.FloatTensor] = None, | |
token_type_ids: Optional[torch.LongTensor] = None, | |
position_ids: Optional[torch.LongTensor] = None, | |
head_mask: Optional[torch.FloatTensor] = None, | |
inputs_embeds: Optional[torch.FloatTensor] = None, | |
use_cache: Optional[bool] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPast]: | |
r""" | |
Returns: | |
Example: | |
```python | |
>>> from transformers import AutoTokenizer, CTRLModel | |
>>> import torch | |
>>> tokenizer = AutoTokenizer.from_pretrained("Salesforce/ctrl") | |
>>> model = CTRLModel.from_pretrained("Salesforce/ctrl") | |
>>> # CTRL was trained with control codes as the first token | |
>>> inputs = tokenizer("Opinion My dog is cute", return_tensors="pt") | |
>>> assert inputs["input_ids"][0, 0].item() in tokenizer.control_codes.values() | |
>>> outputs = model(**inputs) | |
>>> last_hidden_states = outputs.last_hidden_state | |
>>> list(last_hidden_states.shape) | |
[1, 5, 1280] | |
```""" | |
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions | |
use_cache = use_cache if use_cache is not None else self.config.use_cache | |
output_hidden_states = ( | |
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states | |
) | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
if input_ids is not None and inputs_embeds is not None: | |
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") | |
elif input_ids is not None: | |
self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask) | |
input_shape = input_ids.size() | |
input_ids = input_ids.view(-1, input_shape[-1]) | |
batch_size = input_ids.shape[0] | |
elif inputs_embeds is not None: | |
input_shape = inputs_embeds.size()[:-1] | |
batch_size = inputs_embeds.shape[0] | |
else: | |
raise ValueError("You have to specify either input_ids or inputs_embeds") | |
device = input_ids.device if input_ids is not None else inputs_embeds.device | |
if past_key_values is None: | |
past_length = 0 | |
past_key_values = tuple([None] * len(self.h)) | |
else: | |
past_length = past_key_values[0][0].size(-2) | |
if position_ids is None: | |
position_ids = torch.arange(past_length, input_shape[-1] + past_length, dtype=torch.long, device=device) | |
position_ids = position_ids.unsqueeze(0) | |
# Attention mask. | |
if attention_mask is not None: | |
if batch_size <= 0: | |
raise ValueError("batch_size has to be defined and > 0") | |
attention_mask = attention_mask.view(batch_size, -1) | |
# We create a 3D attention mask from a 2D tensor mask. | |
# Sizes are [batch_size, 1, 1, to_seq_length] | |
# So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length] | |
# this attention mask is more simple than the triangular masking of causal attention | |
# used in OpenAI GPT, we just need to prepare the broadcast dimension here. | |
attention_mask = attention_mask.unsqueeze(1).unsqueeze(2) | |
# Since attention_mask is 1.0 for positions we want to attend and 0.0 for | |
# masked positions, this operation will create a tensor which is 0.0 for | |
# positions we want to attend and the dtype's smallest value for masked positions. | |
# Since we are adding it to the raw scores before the softmax, this is | |
# effectively the same as removing these entirely. | |
attention_mask = attention_mask.to(dtype=self.dtype) # fp16 compatibility | |
attention_mask = (1.0 - attention_mask) * torch.finfo(self.dtype).min | |
# Prepare head mask if needed | |
head_mask = self.get_head_mask(head_mask, self.config.n_layer) | |
if token_type_ids is not None: | |
token_type_ids = token_type_ids.view(-1, input_shape[-1]) | |
token_type_embeds = self.w(token_type_ids) | |
token_type_embeds *= np.sqrt(self.d_model_size) | |
else: | |
token_type_embeds = 0 | |
if inputs_embeds is None: | |
inputs_embeds = self.w(input_ids) | |
# inputs_embeds = embedded.unsqueeze(0) if len(input_ids.shape)<2 else embedded | |
seq_len = input_shape[-1] | |
mask = torch.triu(torch.ones(seq_len + past_length, seq_len + past_length), 1).to(device) | |
inputs_embeds *= np.sqrt(self.d_model_size) | |
# `self.pos_encoding` won't be sent to the correct device along the model, so we do it manually. | |
self.pos_encoding = self.pos_encoding.to(device) | |
pos_embeds = self.pos_encoding[position_ids, :] | |
hidden_states = inputs_embeds + pos_embeds + token_type_embeds | |
hidden_states = self.dropout(hidden_states) | |
presents = () if use_cache else None | |
all_hidden_states = () if output_hidden_states else None | |
all_attentions = () if output_attentions else None | |
for i, (h, layer_past) in enumerate(zip(self.h, past_key_values)): | |
if output_hidden_states: | |
all_hidden_states = all_hidden_states + (hidden_states,) | |
outputs = h( | |
hidden_states, | |
mask, | |
layer_past=layer_past, | |
attention_mask=attention_mask, | |
head_mask=head_mask[i], | |
use_cache=use_cache, | |
output_attentions=output_attentions, | |
) | |
hidden_states, present = outputs[:2] | |
if use_cache is True: | |
presents = presents + (present,) | |
if output_attentions: | |
all_attentions += (outputs[2],) | |
hidden_states = self.layernorm(hidden_states) | |
if output_hidden_states: | |
all_hidden_states = all_hidden_states + (hidden_states,) | |
if not return_dict: | |
return tuple(v for v in [hidden_states, presents, all_hidden_states, all_attentions] if v is not None) | |
return BaseModelOutputWithPast( | |
last_hidden_state=hidden_states, | |
past_key_values=presents, | |
hidden_states=all_hidden_states, | |
attentions=all_attentions, | |
) | |
class CTRLLMHeadModel(CTRLPreTrainedModel): | |
_tied_weights_keys = ["lm_head.weight"] | |
def __init__(self, config): | |
super().__init__(config) | |
self.transformer = CTRLModel(config) | |
self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=True) | |
# Initialize weights and apply final processing | |
self.post_init() | |
def get_output_embeddings(self): | |
return self.lm_head | |
def set_output_embeddings(self, new_embeddings): | |
self.lm_head = new_embeddings | |
def prepare_inputs_for_generation(self, input_ids, past_key_values=None, use_cache=None, **kwargs): | |
# only last token for inputs_ids if past is defined in kwargs | |
if past_key_values: | |
input_ids = input_ids[:, -1].unsqueeze(-1) | |
return {"input_ids": input_ids, "past_key_values": past_key_values, "use_cache": use_cache} | |
def forward( | |
self, | |
input_ids: Optional[torch.LongTensor] = None, | |
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, | |
attention_mask: Optional[torch.FloatTensor] = None, | |
token_type_ids: Optional[torch.LongTensor] = None, | |
position_ids: Optional[torch.LongTensor] = None, | |
head_mask: Optional[torch.FloatTensor] = None, | |
inputs_embeds: Optional[torch.FloatTensor] = None, | |
labels: Optional[torch.LongTensor] = None, | |
use_cache: Optional[bool] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
) -> Union[Tuple[torch.Tensor], CausalLMOutputWithPast]: | |
r""" | |
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): | |
Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set | |
`labels = input_ids` Indices are selected in `[-100, 0, ..., config.vocab_size]` All labels set to `-100` | |
are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size]` | |
Returns: | |
Example: | |
```python | |
>>> import torch | |
>>> from transformers import AutoTokenizer, CTRLLMHeadModel | |
>>> tokenizer = AutoTokenizer.from_pretrained("Salesforce/ctrl") | |
>>> model = CTRLLMHeadModel.from_pretrained("Salesforce/ctrl") | |
>>> # CTRL was trained with control codes as the first token | |
>>> inputs = tokenizer("Wikipedia The llama is", return_tensors="pt") | |
>>> assert inputs["input_ids"][0, 0].item() in tokenizer.control_codes.values() | |
>>> sequence_ids = model.generate(inputs["input_ids"]) | |
>>> sequences = tokenizer.batch_decode(sequence_ids) | |
>>> sequences | |
['Wikipedia The llama is a member of the family Bovidae. It is native to the Andes of Peru,'] | |
>>> outputs = model(**inputs, labels=inputs["input_ids"]) | |
>>> round(outputs.loss.item(), 2) | |
9.21 | |
>>> list(outputs.logits.shape) | |
[1, 5, 246534] | |
```""" | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
transformer_outputs = self.transformer( | |
input_ids, | |
past_key_values=past_key_values, | |
attention_mask=attention_mask, | |
token_type_ids=token_type_ids, | |
position_ids=position_ids, | |
head_mask=head_mask, | |
inputs_embeds=inputs_embeds, | |
use_cache=use_cache, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) | |
hidden_states = transformer_outputs[0] | |
lm_logits = self.lm_head(hidden_states) | |
loss = None | |
if labels is not None: | |
# Shift so that tokens < n predict n | |
shift_logits = lm_logits[..., :-1, :].contiguous() | |
shift_labels = labels[..., 1:].contiguous() | |
# Flatten the tokens | |
loss_fct = CrossEntropyLoss() | |
loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1)) | |
if not return_dict: | |
output = (lm_logits,) + transformer_outputs[1:] | |
return ((loss,) + output) if loss is not None else output | |
return CausalLMOutputWithPast( | |
loss=loss, | |
logits=lm_logits, | |
past_key_values=transformer_outputs.past_key_values, | |
hidden_states=transformer_outputs.hidden_states, | |
attentions=transformer_outputs.attentions, | |
) | |
def _reorder_cache( | |
past_key_values: Tuple[Tuple[torch.Tensor]], beam_idx: torch.Tensor | |
) -> Tuple[Tuple[torch.Tensor]]: | |
""" | |
This function is used to re-order the `past_key_values` cache if [`~PreTrainedModel.beam_search`] or | |
[`~PreTrainedModel.beam_sample`] is called. This is required to match `past_key_values` with the correct | |
beam_idx at every generation step. | |
""" | |
return tuple( | |
tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past) | |
for layer_past in past_key_values | |
) | |
class CTRLForSequenceClassification(CTRLPreTrainedModel): | |
def __init__(self, config): | |
super().__init__(config) | |
self.num_labels = config.num_labels | |
self.transformer = CTRLModel(config) | |
self.classifier = nn.Linear(config.n_embd, self.num_labels, bias=False) | |
# Initialize weights and apply final processing | |
self.post_init() | |
def forward( | |
self, | |
input_ids: Optional[torch.LongTensor] = None, | |
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, | |
attention_mask: Optional[torch.FloatTensor] = None, | |
token_type_ids: Optional[torch.LongTensor] = None, | |
position_ids: Optional[torch.LongTensor] = None, | |
head_mask: Optional[torch.FloatTensor] = None, | |
inputs_embeds: Optional[torch.FloatTensor] = None, | |
labels: Optional[torch.LongTensor] = None, | |
use_cache: Optional[bool] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
) -> Union[Tuple[torch.Tensor], SequenceClassifierOutput]: | |
r""" | |
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): | |
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., | |
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If | |
`config.num_labels > 1` a classification loss is computed (Cross-Entropy). | |
Returns: | |
Example of single-label classification: | |
```python | |
>>> import torch | |
>>> from transformers import AutoTokenizer, CTRLForSequenceClassification | |
>>> tokenizer = AutoTokenizer.from_pretrained("Salesforce/ctrl") | |
>>> model = CTRLForSequenceClassification.from_pretrained("Salesforce/ctrl") | |
>>> # CTRL was trained with control codes as the first token | |
>>> inputs = tokenizer("Opinion My dog is cute", return_tensors="pt") | |
>>> assert inputs["input_ids"][0, 0].item() in tokenizer.control_codes.values() | |
>>> with torch.no_grad(): | |
... logits = model(**inputs).logits | |
>>> predicted_class_id = logits.argmax().item() | |
>>> model.config.id2label[predicted_class_id] | |
'LABEL_0' | |
``` | |
```python | |
>>> import torch | |
>>> torch.manual_seed(42) # doctest: +IGNORE_RESULT | |
>>> # To train a model on `num_labels` classes, you can pass `num_labels=num_labels` to `.from_pretrained(...)` | |
>>> num_labels = len(model.config.id2label) | |
>>> model = CTRLForSequenceClassification.from_pretrained("Salesforce/ctrl", num_labels=num_labels) | |
>>> labels = torch.tensor(1) | |
>>> loss = model(**inputs, labels=labels).loss | |
>>> round(loss.item(), 2) | |
0.35 | |
``` | |
Example of multi-label classification: | |
```python | |
>>> import torch | |
>>> from transformers import AutoTokenizer, CTRLForSequenceClassification | |
>>> tokenizer = AutoTokenizer.from_pretrained("Salesforce/ctrl") | |
>>> model = CTRLForSequenceClassification.from_pretrained( | |
... "Salesforce/ctrl", problem_type="multi_label_classification" | |
... ) | |
>>> # CTRL was trained with control codes as the first token | |
>>> inputs = tokenizer("Opinion My dog is cute", return_tensors="pt") | |
>>> assert inputs["input_ids"][0, 0].item() in tokenizer.control_codes.values() | |
>>> with torch.no_grad(): | |
... logits = model(**inputs).logits | |
>>> predicted_class_id = logits.argmax().item() | |
>>> model.config.id2label[predicted_class_id] | |
'LABEL_0' | |
``` | |
```python | |
>>> # To train a model on `num_labels` classes, you can pass `num_labels=num_labels` to `.from_pretrained(...)` | |
>>> num_labels = len(model.config.id2label) | |
>>> model = CTRLForSequenceClassification.from_pretrained("Salesforce/ctrl", num_labels=num_labels) | |
>>> num_labels = len(model.config.id2label) | |
>>> labels = torch.nn.functional.one_hot(torch.tensor([predicted_class_id]), num_classes=num_labels).to( | |
... torch.float | |
... ) | |
>>> loss = model(**inputs, labels=labels).loss | |
>>> loss.backward() # doctest: +IGNORE_RESULT | |
```""" | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
transformer_outputs = self.transformer( | |
input_ids, | |
past_key_values=past_key_values, | |
attention_mask=attention_mask, | |
token_type_ids=token_type_ids, | |
position_ids=position_ids, | |
head_mask=head_mask, | |
inputs_embeds=inputs_embeds, | |
use_cache=use_cache, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) | |
hidden_states = transformer_outputs[0] | |
logits = self.classifier(hidden_states) | |
if input_ids is not None: | |
batch_size, sequence_length = input_ids.shape[:2] | |
else: | |
batch_size, sequence_length = inputs_embeds.shape[:2] | |
if self.config.pad_token_id is None and batch_size != 1: | |
raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.") | |
if self.config.pad_token_id is None: | |
sequence_lengths = -1 | |
else: | |
if input_ids is not None: | |
sequence_lengths = (torch.eq(input_ids, self.config.pad_token_id).long().argmax(-1) - 1).to( | |
logits.device | |
) | |
else: | |
sequence_lengths = -1 | |
logger.warning( | |
f"{self.__class__.__name__} will not detect padding tokens in `inputs_embeds`. Results may be " | |
"unexpected if using padding tokens in conjunction with `inputs_embeds.`" | |
) | |
pooled_logits = logits[range(batch_size), sequence_lengths] | |
loss = None | |
if labels is not None: | |
if self.config.problem_type is None: | |
if self.num_labels == 1: | |
self.config.problem_type = "regression" | |
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): | |
self.config.problem_type = "single_label_classification" | |
else: | |
self.config.problem_type = "multi_label_classification" | |
if self.config.problem_type == "regression": | |
loss_fct = MSELoss() | |
if self.num_labels == 1: | |
loss = loss_fct(pooled_logits.squeeze(), labels.squeeze()) | |
else: | |
loss = loss_fct(pooled_logits, labels) | |
elif self.config.problem_type == "single_label_classification": | |
loss_fct = CrossEntropyLoss() | |
loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1)) | |
elif self.config.problem_type == "multi_label_classification": | |
loss_fct = BCEWithLogitsLoss() | |
loss = loss_fct(pooled_logits, labels) | |
if not return_dict: | |
output = (pooled_logits,) + transformer_outputs[2:] | |
return ((loss,) + output) if loss is not None else output | |
return SequenceClassifierOutput( | |
loss=loss, | |
logits=pooled_logits, | |
hidden_states=transformer_outputs.hidden_states, | |
attentions=transformer_outputs.attentions, | |
) | |