Spaces:
Running
on
T4
Running
on
T4
# coding=utf-8 | |
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""Tokenization classes for Bert.""" | |
import collections | |
import os | |
import unicodedata | |
from typing import List, Optional, Tuple | |
from ...tokenization_utils import PreTrainedTokenizer, _is_control, _is_punctuation, _is_whitespace | |
from ...utils import logging | |
logger = logging.get_logger(__name__) | |
VOCAB_FILES_NAMES = {"vocab_file": "vocab.txt"} | |
PRETRAINED_VOCAB_FILES_MAP = { | |
"vocab_file": { | |
"bert-base-uncased": "https://huggingface.co/bert-base-uncased/resolve/main/vocab.txt", | |
"bert-large-uncased": "https://huggingface.co/bert-large-uncased/resolve/main/vocab.txt", | |
"bert-base-cased": "https://huggingface.co/bert-base-cased/resolve/main/vocab.txt", | |
"bert-large-cased": "https://huggingface.co/bert-large-cased/resolve/main/vocab.txt", | |
"bert-base-multilingual-uncased": ( | |
"https://huggingface.co/bert-base-multilingual-uncased/resolve/main/vocab.txt" | |
), | |
"bert-base-multilingual-cased": "https://huggingface.co/bert-base-multilingual-cased/resolve/main/vocab.txt", | |
"bert-base-chinese": "https://huggingface.co/bert-base-chinese/resolve/main/vocab.txt", | |
"bert-base-german-cased": "https://huggingface.co/bert-base-german-cased/resolve/main/vocab.txt", | |
"bert-large-uncased-whole-word-masking": ( | |
"https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/vocab.txt" | |
), | |
"bert-large-cased-whole-word-masking": ( | |
"https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/vocab.txt" | |
), | |
"bert-large-uncased-whole-word-masking-finetuned-squad": ( | |
"https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/vocab.txt" | |
), | |
"bert-large-cased-whole-word-masking-finetuned-squad": ( | |
"https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/vocab.txt" | |
), | |
"bert-base-cased-finetuned-mrpc": ( | |
"https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/vocab.txt" | |
), | |
"bert-base-german-dbmdz-cased": "https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/vocab.txt", | |
"bert-base-german-dbmdz-uncased": ( | |
"https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/vocab.txt" | |
), | |
"TurkuNLP/bert-base-finnish-cased-v1": ( | |
"https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/vocab.txt" | |
), | |
"TurkuNLP/bert-base-finnish-uncased-v1": ( | |
"https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/vocab.txt" | |
), | |
"wietsedv/bert-base-dutch-cased": ( | |
"https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/vocab.txt" | |
), | |
} | |
} | |
PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = { | |
"bert-base-uncased": 512, | |
"bert-large-uncased": 512, | |
"bert-base-cased": 512, | |
"bert-large-cased": 512, | |
"bert-base-multilingual-uncased": 512, | |
"bert-base-multilingual-cased": 512, | |
"bert-base-chinese": 512, | |
"bert-base-german-cased": 512, | |
"bert-large-uncased-whole-word-masking": 512, | |
"bert-large-cased-whole-word-masking": 512, | |
"bert-large-uncased-whole-word-masking-finetuned-squad": 512, | |
"bert-large-cased-whole-word-masking-finetuned-squad": 512, | |
"bert-base-cased-finetuned-mrpc": 512, | |
"bert-base-german-dbmdz-cased": 512, | |
"bert-base-german-dbmdz-uncased": 512, | |
"TurkuNLP/bert-base-finnish-cased-v1": 512, | |
"TurkuNLP/bert-base-finnish-uncased-v1": 512, | |
"wietsedv/bert-base-dutch-cased": 512, | |
} | |
PRETRAINED_INIT_CONFIGURATION = { | |
"bert-base-uncased": {"do_lower_case": True}, | |
"bert-large-uncased": {"do_lower_case": True}, | |
"bert-base-cased": {"do_lower_case": False}, | |
"bert-large-cased": {"do_lower_case": False}, | |
"bert-base-multilingual-uncased": {"do_lower_case": True}, | |
"bert-base-multilingual-cased": {"do_lower_case": False}, | |
"bert-base-chinese": {"do_lower_case": False}, | |
"bert-base-german-cased": {"do_lower_case": False}, | |
"bert-large-uncased-whole-word-masking": {"do_lower_case": True}, | |
"bert-large-cased-whole-word-masking": {"do_lower_case": False}, | |
"bert-large-uncased-whole-word-masking-finetuned-squad": {"do_lower_case": True}, | |
"bert-large-cased-whole-word-masking-finetuned-squad": {"do_lower_case": False}, | |
"bert-base-cased-finetuned-mrpc": {"do_lower_case": False}, | |
"bert-base-german-dbmdz-cased": {"do_lower_case": False}, | |
"bert-base-german-dbmdz-uncased": {"do_lower_case": True}, | |
"TurkuNLP/bert-base-finnish-cased-v1": {"do_lower_case": False}, | |
"TurkuNLP/bert-base-finnish-uncased-v1": {"do_lower_case": True}, | |
"wietsedv/bert-base-dutch-cased": {"do_lower_case": False}, | |
} | |
def load_vocab(vocab_file): | |
"""Loads a vocabulary file into a dictionary.""" | |
vocab = collections.OrderedDict() | |
with open(vocab_file, "r", encoding="utf-8") as reader: | |
tokens = reader.readlines() | |
for index, token in enumerate(tokens): | |
token = token.rstrip("\n") | |
vocab[token] = index | |
return vocab | |
def whitespace_tokenize(text): | |
"""Runs basic whitespace cleaning and splitting on a piece of text.""" | |
text = text.strip() | |
if not text: | |
return [] | |
tokens = text.split() | |
return tokens | |
class BertTokenizer(PreTrainedTokenizer): | |
r""" | |
Construct a BERT tokenizer. Based on WordPiece. | |
This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to | |
this superclass for more information regarding those methods. | |
Args: | |
vocab_file (`str`): | |
File containing the vocabulary. | |
do_lower_case (`bool`, *optional*, defaults to `True`): | |
Whether or not to lowercase the input when tokenizing. | |
do_basic_tokenize (`bool`, *optional*, defaults to `True`): | |
Whether or not to do basic tokenization before WordPiece. | |
never_split (`Iterable`, *optional*): | |
Collection of tokens which will never be split during tokenization. Only has an effect when | |
`do_basic_tokenize=True` | |
unk_token (`str`, *optional*, defaults to `"[UNK]"`): | |
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this | |
token instead. | |
sep_token (`str`, *optional*, defaults to `"[SEP]"`): | |
The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for | |
sequence classification or for a text and a question for question answering. It is also used as the last | |
token of a sequence built with special tokens. | |
pad_token (`str`, *optional*, defaults to `"[PAD]"`): | |
The token used for padding, for example when batching sequences of different lengths. | |
cls_token (`str`, *optional*, defaults to `"[CLS]"`): | |
The classifier token which is used when doing sequence classification (classification of the whole sequence | |
instead of per-token classification). It is the first token of the sequence when built with special tokens. | |
mask_token (`str`, *optional*, defaults to `"[MASK]"`): | |
The token used for masking values. This is the token used when training this model with masked language | |
modeling. This is the token which the model will try to predict. | |
tokenize_chinese_chars (`bool`, *optional*, defaults to `True`): | |
Whether or not to tokenize Chinese characters. | |
This should likely be deactivated for Japanese (see this | |
[issue](https://github.com/huggingface/transformers/issues/328)). | |
strip_accents (`bool`, *optional*): | |
Whether or not to strip all accents. If this option is not specified, then it will be determined by the | |
value for `lowercase` (as in the original BERT). | |
""" | |
vocab_files_names = VOCAB_FILES_NAMES | |
pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP | |
pretrained_init_configuration = PRETRAINED_INIT_CONFIGURATION | |
max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES | |
def __init__( | |
self, | |
vocab_file, | |
do_lower_case=True, | |
do_basic_tokenize=True, | |
never_split=None, | |
unk_token="[UNK]", | |
sep_token="[SEP]", | |
pad_token="[PAD]", | |
cls_token="[CLS]", | |
mask_token="[MASK]", | |
tokenize_chinese_chars=True, | |
strip_accents=None, | |
**kwargs, | |
): | |
if not os.path.isfile(vocab_file): | |
raise ValueError( | |
f"Can't find a vocabulary file at path '{vocab_file}'. To load the vocabulary from a Google pretrained" | |
" model use `tokenizer = BertTokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`" | |
) | |
self.vocab = load_vocab(vocab_file) | |
self.ids_to_tokens = collections.OrderedDict([(ids, tok) for tok, ids in self.vocab.items()]) | |
self.do_basic_tokenize = do_basic_tokenize | |
if do_basic_tokenize: | |
self.basic_tokenizer = BasicTokenizer( | |
do_lower_case=do_lower_case, | |
never_split=never_split, | |
tokenize_chinese_chars=tokenize_chinese_chars, | |
strip_accents=strip_accents, | |
) | |
self.wordpiece_tokenizer = WordpieceTokenizer(vocab=self.vocab, unk_token=str(unk_token)) | |
super().__init__( | |
do_lower_case=do_lower_case, | |
do_basic_tokenize=do_basic_tokenize, | |
never_split=never_split, | |
unk_token=unk_token, | |
sep_token=sep_token, | |
pad_token=pad_token, | |
cls_token=cls_token, | |
mask_token=mask_token, | |
tokenize_chinese_chars=tokenize_chinese_chars, | |
strip_accents=strip_accents, | |
**kwargs, | |
) | |
def do_lower_case(self): | |
return self.basic_tokenizer.do_lower_case | |
def vocab_size(self): | |
return len(self.vocab) | |
def get_vocab(self): | |
return dict(self.vocab, **self.added_tokens_encoder) | |
def _tokenize(self, text, split_special_tokens=False): | |
split_tokens = [] | |
if self.do_basic_tokenize: | |
for token in self.basic_tokenizer.tokenize( | |
text, never_split=self.all_special_tokens if not split_special_tokens else None | |
): | |
# If the token is part of the never_split set | |
if token in self.basic_tokenizer.never_split: | |
split_tokens.append(token) | |
else: | |
split_tokens += self.wordpiece_tokenizer.tokenize(token) | |
else: | |
split_tokens = self.wordpiece_tokenizer.tokenize(text) | |
return split_tokens | |
def _convert_token_to_id(self, token): | |
"""Converts a token (str) in an id using the vocab.""" | |
return self.vocab.get(token, self.vocab.get(self.unk_token)) | |
def _convert_id_to_token(self, index): | |
"""Converts an index (integer) in a token (str) using the vocab.""" | |
return self.ids_to_tokens.get(index, self.unk_token) | |
def convert_tokens_to_string(self, tokens): | |
"""Converts a sequence of tokens (string) in a single string.""" | |
out_string = " ".join(tokens).replace(" ##", "").strip() | |
return out_string | |
def build_inputs_with_special_tokens( | |
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None | |
) -> List[int]: | |
""" | |
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and | |
adding special tokens. A BERT sequence has the following format: | |
- single sequence: `[CLS] X [SEP]` | |
- pair of sequences: `[CLS] A [SEP] B [SEP]` | |
Args: | |
token_ids_0 (`List[int]`): | |
List of IDs to which the special tokens will be added. | |
token_ids_1 (`List[int]`, *optional*): | |
Optional second list of IDs for sequence pairs. | |
Returns: | |
`List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens. | |
""" | |
if token_ids_1 is None: | |
return [self.cls_token_id] + token_ids_0 + [self.sep_token_id] | |
cls = [self.cls_token_id] | |
sep = [self.sep_token_id] | |
return cls + token_ids_0 + sep + token_ids_1 + sep | |
def get_special_tokens_mask( | |
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False | |
) -> List[int]: | |
""" | |
Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding | |
special tokens using the tokenizer `prepare_for_model` method. | |
Args: | |
token_ids_0 (`List[int]`): | |
List of IDs. | |
token_ids_1 (`List[int]`, *optional*): | |
Optional second list of IDs for sequence pairs. | |
already_has_special_tokens (`bool`, *optional*, defaults to `False`): | |
Whether or not the token list is already formatted with special tokens for the model. | |
Returns: | |
`List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token. | |
""" | |
if already_has_special_tokens: | |
return super().get_special_tokens_mask( | |
token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True | |
) | |
if token_ids_1 is not None: | |
return [1] + ([0] * len(token_ids_0)) + [1] + ([0] * len(token_ids_1)) + [1] | |
return [1] + ([0] * len(token_ids_0)) + [1] | |
def create_token_type_ids_from_sequences( | |
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None | |
) -> List[int]: | |
""" | |
Create a mask from the two sequences passed to be used in a sequence-pair classification task. A BERT sequence | |
pair mask has the following format: | |
``` | |
0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 | |
| first sequence | second sequence | | |
``` | |
If `token_ids_1` is `None`, this method only returns the first portion of the mask (0s). | |
Args: | |
token_ids_0 (`List[int]`): | |
List of IDs. | |
token_ids_1 (`List[int]`, *optional*): | |
Optional second list of IDs for sequence pairs. | |
Returns: | |
`List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s). | |
""" | |
sep = [self.sep_token_id] | |
cls = [self.cls_token_id] | |
if token_ids_1 is None: | |
return len(cls + token_ids_0 + sep) * [0] | |
return len(cls + token_ids_0 + sep) * [0] + len(token_ids_1 + sep) * [1] | |
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: | |
index = 0 | |
if os.path.isdir(save_directory): | |
vocab_file = os.path.join( | |
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] | |
) | |
else: | |
vocab_file = (filename_prefix + "-" if filename_prefix else "") + save_directory | |
with open(vocab_file, "w", encoding="utf-8") as writer: | |
for token, token_index in sorted(self.vocab.items(), key=lambda kv: kv[1]): | |
if index != token_index: | |
logger.warning( | |
f"Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive." | |
" Please check that the vocabulary is not corrupted!" | |
) | |
index = token_index | |
writer.write(token + "\n") | |
index += 1 | |
return (vocab_file,) | |
class BasicTokenizer(object): | |
""" | |
Constructs a BasicTokenizer that will run basic tokenization (punctuation splitting, lower casing, etc.). | |
Args: | |
do_lower_case (`bool`, *optional*, defaults to `True`): | |
Whether or not to lowercase the input when tokenizing. | |
never_split (`Iterable`, *optional*): | |
Collection of tokens which will never be split during tokenization. Only has an effect when | |
`do_basic_tokenize=True` | |
tokenize_chinese_chars (`bool`, *optional*, defaults to `True`): | |
Whether or not to tokenize Chinese characters. | |
This should likely be deactivated for Japanese (see this | |
[issue](https://github.com/huggingface/transformers/issues/328)). | |
strip_accents (`bool`, *optional*): | |
Whether or not to strip all accents. If this option is not specified, then it will be determined by the | |
value for `lowercase` (as in the original BERT). | |
do_split_on_punc (`bool`, *optional*, defaults to `True`): | |
In some instances we want to skip the basic punctuation splitting so that later tokenization can capture | |
the full context of the words, such as contractions. | |
""" | |
def __init__( | |
self, | |
do_lower_case=True, | |
never_split=None, | |
tokenize_chinese_chars=True, | |
strip_accents=None, | |
do_split_on_punc=True, | |
): | |
if never_split is None: | |
never_split = [] | |
self.do_lower_case = do_lower_case | |
self.never_split = set(never_split) | |
self.tokenize_chinese_chars = tokenize_chinese_chars | |
self.strip_accents = strip_accents | |
self.do_split_on_punc = do_split_on_punc | |
def tokenize(self, text, never_split=None): | |
""" | |
Basic Tokenization of a piece of text. For sub-word tokenization, see WordPieceTokenizer. | |
Args: | |
never_split (`List[str]`, *optional*) | |
Kept for backward compatibility purposes. Now implemented directly at the base class level (see | |
[`PreTrainedTokenizer.tokenize`]) List of token not to split. | |
""" | |
# union() returns a new set by concatenating the two sets. | |
never_split = self.never_split.union(set(never_split)) if never_split else self.never_split | |
text = self._clean_text(text) | |
# This was added on November 1st, 2018 for the multilingual and Chinese | |
# models. This is also applied to the English models now, but it doesn't | |
# matter since the English models were not trained on any Chinese data | |
# and generally don't have any Chinese data in them (there are Chinese | |
# characters in the vocabulary because Wikipedia does have some Chinese | |
# words in the English Wikipedia.). | |
if self.tokenize_chinese_chars: | |
text = self._tokenize_chinese_chars(text) | |
# prevents treating the same character with different unicode codepoints as different characters | |
unicode_normalized_text = unicodedata.normalize("NFC", text) | |
orig_tokens = whitespace_tokenize(unicode_normalized_text) | |
split_tokens = [] | |
for token in orig_tokens: | |
if token not in never_split: | |
if self.do_lower_case: | |
token = token.lower() | |
if self.strip_accents is not False: | |
token = self._run_strip_accents(token) | |
elif self.strip_accents: | |
token = self._run_strip_accents(token) | |
split_tokens.extend(self._run_split_on_punc(token, never_split)) | |
output_tokens = whitespace_tokenize(" ".join(split_tokens)) | |
return output_tokens | |
def _run_strip_accents(self, text): | |
"""Strips accents from a piece of text.""" | |
text = unicodedata.normalize("NFD", text) | |
output = [] | |
for char in text: | |
cat = unicodedata.category(char) | |
if cat == "Mn": | |
continue | |
output.append(char) | |
return "".join(output) | |
def _run_split_on_punc(self, text, never_split=None): | |
"""Splits punctuation on a piece of text.""" | |
if not self.do_split_on_punc or (never_split is not None and text in never_split): | |
return [text] | |
chars = list(text) | |
i = 0 | |
start_new_word = True | |
output = [] | |
while i < len(chars): | |
char = chars[i] | |
if _is_punctuation(char): | |
output.append([char]) | |
start_new_word = True | |
else: | |
if start_new_word: | |
output.append([]) | |
start_new_word = False | |
output[-1].append(char) | |
i += 1 | |
return ["".join(x) for x in output] | |
def _tokenize_chinese_chars(self, text): | |
"""Adds whitespace around any CJK character.""" | |
output = [] | |
for char in text: | |
cp = ord(char) | |
if self._is_chinese_char(cp): | |
output.append(" ") | |
output.append(char) | |
output.append(" ") | |
else: | |
output.append(char) | |
return "".join(output) | |
def _is_chinese_char(self, cp): | |
"""Checks whether CP is the codepoint of a CJK character.""" | |
# This defines a "chinese character" as anything in the CJK Unicode block: | |
# https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block) | |
# | |
# Note that the CJK Unicode block is NOT all Japanese and Korean characters, | |
# despite its name. The modern Korean Hangul alphabet is a different block, | |
# as is Japanese Hiragana and Katakana. Those alphabets are used to write | |
# space-separated words, so they are not treated specially and handled | |
# like the all of the other languages. | |
if ( | |
(cp >= 0x4E00 and cp <= 0x9FFF) | |
or (cp >= 0x3400 and cp <= 0x4DBF) # | |
or (cp >= 0x20000 and cp <= 0x2A6DF) # | |
or (cp >= 0x2A700 and cp <= 0x2B73F) # | |
or (cp >= 0x2B740 and cp <= 0x2B81F) # | |
or (cp >= 0x2B820 and cp <= 0x2CEAF) # | |
or (cp >= 0xF900 and cp <= 0xFAFF) | |
or (cp >= 0x2F800 and cp <= 0x2FA1F) # | |
): # | |
return True | |
return False | |
def _clean_text(self, text): | |
"""Performs invalid character removal and whitespace cleanup on text.""" | |
output = [] | |
for char in text: | |
cp = ord(char) | |
if cp == 0 or cp == 0xFFFD or _is_control(char): | |
continue | |
if _is_whitespace(char): | |
output.append(" ") | |
else: | |
output.append(char) | |
return "".join(output) | |
class WordpieceTokenizer(object): | |
"""Runs WordPiece tokenization.""" | |
def __init__(self, vocab, unk_token, max_input_chars_per_word=100): | |
self.vocab = vocab | |
self.unk_token = unk_token | |
self.max_input_chars_per_word = max_input_chars_per_word | |
def tokenize(self, text): | |
""" | |
Tokenizes a piece of text into its word pieces. This uses a greedy longest-match-first algorithm to perform | |
tokenization using the given vocabulary. | |
For example, `input = "unaffable"` wil return as output `["un", "##aff", "##able"]`. | |
Args: | |
text: A single token or whitespace separated tokens. This should have | |
already been passed through *BasicTokenizer*. | |
Returns: | |
A list of wordpiece tokens. | |
""" | |
output_tokens = [] | |
for token in whitespace_tokenize(text): | |
chars = list(token) | |
if len(chars) > self.max_input_chars_per_word: | |
output_tokens.append(self.unk_token) | |
continue | |
is_bad = False | |
start = 0 | |
sub_tokens = [] | |
while start < len(chars): | |
end = len(chars) | |
cur_substr = None | |
while start < end: | |
substr = "".join(chars[start:end]) | |
if start > 0: | |
substr = "##" + substr | |
if substr in self.vocab: | |
cur_substr = substr | |
break | |
end -= 1 | |
if cur_substr is None: | |
is_bad = True | |
break | |
sub_tokens.append(cur_substr) | |
start = end | |
if is_bad: | |
output_tokens.append(self.unk_token) | |
else: | |
output_tokens.extend(sub_tokens) | |
return output_tokens | |