|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import json |
|
import os |
|
import pickle |
|
import random |
|
import time |
|
import warnings |
|
from typing import Dict, List, Optional |
|
|
|
import torch |
|
from filelock import FileLock |
|
from torch.utils.data import Dataset |
|
|
|
from ...tokenization_utils import PreTrainedTokenizer |
|
from ...utils import logging |
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
|
|
DEPRECATION_WARNING = ( |
|
"This dataset will be removed from the library soon, preprocessing should be handled with the 🤗 Datasets " |
|
"library. You can have a look at this example script for pointers: {0}" |
|
) |
|
|
|
|
|
class TextDataset(Dataset): |
|
""" |
|
This will be superseded by a framework-agnostic approach soon. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
tokenizer: PreTrainedTokenizer, |
|
file_path: str, |
|
block_size: int, |
|
overwrite_cache=False, |
|
cache_dir: Optional[str] = None, |
|
): |
|
warnings.warn( |
|
DEPRECATION_WARNING.format( |
|
"https://github.com/huggingface/transformers/blob/main/examples/pytorch/language-modeling/run_mlm.py" |
|
), |
|
FutureWarning, |
|
) |
|
if os.path.isfile(file_path) is False: |
|
raise ValueError(f"Input file path {file_path} not found") |
|
|
|
block_size = block_size - tokenizer.num_special_tokens_to_add(pair=False) |
|
|
|
directory, filename = os.path.split(file_path) |
|
cached_features_file = os.path.join( |
|
cache_dir if cache_dir is not None else directory, |
|
f"cached_lm_{tokenizer.__class__.__name__}_{block_size}_{filename}", |
|
) |
|
|
|
|
|
|
|
lock_path = cached_features_file + ".lock" |
|
with FileLock(lock_path): |
|
if os.path.exists(cached_features_file) and not overwrite_cache: |
|
start = time.time() |
|
with open(cached_features_file, "rb") as handle: |
|
self.examples = pickle.load(handle) |
|
logger.info( |
|
f"Loading features from cached file {cached_features_file} [took %.3f s]", time.time() - start |
|
) |
|
|
|
else: |
|
logger.info(f"Creating features from dataset file at {directory}") |
|
|
|
self.examples = [] |
|
with open(file_path, encoding="utf-8") as f: |
|
text = f.read() |
|
|
|
tokenized_text = tokenizer.convert_tokens_to_ids(tokenizer.tokenize(text)) |
|
|
|
for i in range(0, len(tokenized_text) - block_size + 1, block_size): |
|
self.examples.append( |
|
tokenizer.build_inputs_with_special_tokens(tokenized_text[i : i + block_size]) |
|
) |
|
|
|
|
|
|
|
|
|
start = time.time() |
|
with open(cached_features_file, "wb") as handle: |
|
pickle.dump(self.examples, handle, protocol=pickle.HIGHEST_PROTOCOL) |
|
logger.info( |
|
f"Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]" |
|
) |
|
|
|
def __len__(self): |
|
return len(self.examples) |
|
|
|
def __getitem__(self, i) -> torch.Tensor: |
|
return torch.tensor(self.examples[i], dtype=torch.long) |
|
|
|
|
|
class LineByLineTextDataset(Dataset): |
|
""" |
|
This will be superseded by a framework-agnostic approach soon. |
|
""" |
|
|
|
def __init__(self, tokenizer: PreTrainedTokenizer, file_path: str, block_size: int): |
|
warnings.warn( |
|
DEPRECATION_WARNING.format( |
|
"https://github.com/huggingface/transformers/blob/main/examples/pytorch/language-modeling/run_mlm.py" |
|
), |
|
FutureWarning, |
|
) |
|
if os.path.isfile(file_path) is False: |
|
raise ValueError(f"Input file path {file_path} not found") |
|
|
|
|
|
|
|
logger.info(f"Creating features from dataset file at {file_path}") |
|
|
|
with open(file_path, encoding="utf-8") as f: |
|
lines = [line for line in f.read().splitlines() if (len(line) > 0 and not line.isspace())] |
|
|
|
batch_encoding = tokenizer(lines, add_special_tokens=True, truncation=True, max_length=block_size) |
|
self.examples = batch_encoding["input_ids"] |
|
self.examples = [{"input_ids": torch.tensor(e, dtype=torch.long)} for e in self.examples] |
|
|
|
def __len__(self): |
|
return len(self.examples) |
|
|
|
def __getitem__(self, i) -> Dict[str, torch.tensor]: |
|
return self.examples[i] |
|
|
|
|
|
class LineByLineWithRefDataset(Dataset): |
|
""" |
|
This will be superseded by a framework-agnostic approach soon. |
|
""" |
|
|
|
def __init__(self, tokenizer: PreTrainedTokenizer, file_path: str, block_size: int, ref_path: str): |
|
warnings.warn( |
|
DEPRECATION_WARNING.format( |
|
"https://github.com/huggingface/transformers/blob/main/examples/pytorch/language-modeling/run_mlm_wwm.py" |
|
), |
|
FutureWarning, |
|
) |
|
if os.path.isfile(file_path) is False: |
|
raise ValueError(f"Input file path {file_path} not found") |
|
if os.path.isfile(ref_path) is False: |
|
raise ValueError(f"Ref file path {file_path} not found") |
|
|
|
|
|
|
|
logger.info(f"Creating features from dataset file at {file_path}") |
|
logger.info(f"Use ref segment results at {ref_path}") |
|
with open(file_path, encoding="utf-8") as f: |
|
data = f.readlines() |
|
data = [line.strip() for line in data if len(line) > 0 and not line.isspace()] |
|
|
|
with open(ref_path, encoding="utf-8") as f: |
|
ref = [json.loads(line) for line in f.read().splitlines() if (len(line) > 0 and not line.isspace())] |
|
if len(data) != len(ref): |
|
raise ValueError( |
|
f"Length of Input file should be equal to Ref file. But the length of {file_path} is {len(data)} " |
|
f"while length of {ref_path} is {len(ref)}" |
|
) |
|
|
|
batch_encoding = tokenizer(data, add_special_tokens=True, truncation=True, max_length=block_size) |
|
self.examples = batch_encoding["input_ids"] |
|
self.examples = [{"input_ids": torch.tensor(e, dtype=torch.long)} for e in self.examples] |
|
|
|
n = len(self.examples) |
|
for i in range(n): |
|
self.examples[i]["chinese_ref"] = torch.tensor(ref[i], dtype=torch.long) |
|
|
|
def __len__(self): |
|
return len(self.examples) |
|
|
|
def __getitem__(self, i) -> Dict[str, torch.tensor]: |
|
return self.examples[i] |
|
|
|
|
|
class LineByLineWithSOPTextDataset(Dataset): |
|
""" |
|
Dataset for sentence order prediction task, prepare sentence pairs for SOP task |
|
""" |
|
|
|
def __init__(self, tokenizer: PreTrainedTokenizer, file_dir: str, block_size: int): |
|
warnings.warn( |
|
DEPRECATION_WARNING.format( |
|
"https://github.com/huggingface/transformers/blob/main/examples/pytorch/language-modeling/run_mlm.py" |
|
), |
|
FutureWarning, |
|
) |
|
if os.path.isdir(file_dir) is False: |
|
raise ValueError(f"{file_dir} is not a directory") |
|
logger.info(f"Creating features from dataset file folder at {file_dir}") |
|
self.examples = [] |
|
|
|
|
|
for file_name in os.listdir(file_dir): |
|
file_path = os.path.join(file_dir, file_name) |
|
if os.path.isfile(file_path) is False: |
|
raise ValueError(f"{file_path} is not a file") |
|
article_open = False |
|
with open(file_path, encoding="utf-8") as f: |
|
original_lines = f.readlines() |
|
article_lines = [] |
|
for line in original_lines: |
|
if "<doc id=" in line: |
|
article_open = True |
|
elif "</doc>" in line: |
|
article_open = False |
|
document = [ |
|
tokenizer.convert_tokens_to_ids(tokenizer.tokenize(line)) |
|
for line in article_lines[1:] |
|
if (len(line) > 0 and not line.isspace()) |
|
] |
|
|
|
examples = self.create_examples_from_document(document, block_size, tokenizer) |
|
self.examples.extend(examples) |
|
article_lines = [] |
|
else: |
|
if article_open: |
|
article_lines.append(line) |
|
|
|
logger.info("Dataset parse finished.") |
|
|
|
def create_examples_from_document(self, document, block_size, tokenizer, short_seq_prob=0.1): |
|
"""Creates examples for a single document.""" |
|
|
|
|
|
max_num_tokens = block_size - tokenizer.num_special_tokens_to_add(pair=True) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
target_seq_length = max_num_tokens |
|
if random.random() < short_seq_prob: |
|
target_seq_length = random.randint(2, max_num_tokens) |
|
|
|
|
|
|
|
|
|
|
|
|
|
examples = [] |
|
current_chunk = [] |
|
current_length = 0 |
|
i = 0 |
|
while i < len(document): |
|
segment = document[i] |
|
if not segment: |
|
i += 1 |
|
continue |
|
current_chunk.append(segment) |
|
current_length += len(segment) |
|
|
|
if i == len(document) - 1 or current_length >= target_seq_length: |
|
if current_chunk: |
|
|
|
a_end = 1 |
|
|
|
if len(current_chunk) >= 2: |
|
a_end = random.randint(1, len(current_chunk) - 1) |
|
|
|
tokens_a = [] |
|
for j in range(a_end): |
|
tokens_a.extend(current_chunk[j]) |
|
|
|
|
|
tokens_b = [] |
|
for j in range(a_end, len(current_chunk)): |
|
tokens_b.extend(current_chunk[j]) |
|
|
|
if len(tokens_a) == 0 or len(tokens_b) == 0: |
|
continue |
|
|
|
|
|
if random.random() < 0.5: |
|
is_next = False |
|
tokens_a, tokens_b = tokens_b, tokens_a |
|
else: |
|
is_next = True |
|
|
|
def truncate_seq_pair(tokens_a, tokens_b, max_num_tokens): |
|
"""Truncates a pair of sequences to a maximum sequence length.""" |
|
while True: |
|
total_length = len(tokens_a) + len(tokens_b) |
|
if total_length <= max_num_tokens: |
|
break |
|
trunc_tokens = tokens_a if len(tokens_a) > len(tokens_b) else tokens_b |
|
if not (len(trunc_tokens) >= 1): |
|
raise ValueError("Sequence length to be truncated must be no less than one") |
|
|
|
|
|
if random.random() < 0.5: |
|
del trunc_tokens[0] |
|
else: |
|
trunc_tokens.pop() |
|
|
|
truncate_seq_pair(tokens_a, tokens_b, max_num_tokens) |
|
if not (len(tokens_a) >= 1): |
|
raise ValueError(f"Length of sequence a is {len(tokens_a)} which must be no less than 1") |
|
if not (len(tokens_b) >= 1): |
|
raise ValueError(f"Length of sequence b is {len(tokens_b)} which must be no less than 1") |
|
|
|
|
|
input_ids = tokenizer.build_inputs_with_special_tokens(tokens_a, tokens_b) |
|
|
|
token_type_ids = tokenizer.create_token_type_ids_from_sequences(tokens_a, tokens_b) |
|
|
|
example = { |
|
"input_ids": torch.tensor(input_ids, dtype=torch.long), |
|
"token_type_ids": torch.tensor(token_type_ids, dtype=torch.long), |
|
"sentence_order_label": torch.tensor(0 if is_next else 1, dtype=torch.long), |
|
} |
|
examples.append(example) |
|
current_chunk = [] |
|
current_length = 0 |
|
i += 1 |
|
return examples |
|
|
|
def __len__(self): |
|
return len(self.examples) |
|
|
|
def __getitem__(self, i) -> Dict[str, torch.tensor]: |
|
return self.examples[i] |
|
|
|
|
|
class TextDatasetForNextSentencePrediction(Dataset): |
|
""" |
|
This will be superseded by a framework-agnostic approach soon. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
tokenizer: PreTrainedTokenizer, |
|
file_path: str, |
|
block_size: int, |
|
overwrite_cache=False, |
|
short_seq_probability=0.1, |
|
nsp_probability=0.5, |
|
): |
|
warnings.warn( |
|
DEPRECATION_WARNING.format( |
|
"https://github.com/huggingface/transformers/blob/main/examples/pytorch/language-modeling/run_mlm.py" |
|
), |
|
FutureWarning, |
|
) |
|
if not os.path.isfile(file_path): |
|
raise ValueError(f"Input file path {file_path} not found") |
|
|
|
self.short_seq_probability = short_seq_probability |
|
self.nsp_probability = nsp_probability |
|
|
|
directory, filename = os.path.split(file_path) |
|
cached_features_file = os.path.join( |
|
directory, |
|
f"cached_nsp_{tokenizer.__class__.__name__}_{block_size}_{filename}", |
|
) |
|
|
|
self.tokenizer = tokenizer |
|
|
|
|
|
|
|
lock_path = cached_features_file + ".lock" |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
with FileLock(lock_path): |
|
if os.path.exists(cached_features_file) and not overwrite_cache: |
|
start = time.time() |
|
with open(cached_features_file, "rb") as handle: |
|
self.examples = pickle.load(handle) |
|
logger.info( |
|
f"Loading features from cached file {cached_features_file} [took %.3f s]", time.time() - start |
|
) |
|
else: |
|
logger.info(f"Creating features from dataset file at {directory}") |
|
|
|
self.documents = [[]] |
|
with open(file_path, encoding="utf-8") as f: |
|
while True: |
|
line = f.readline() |
|
if not line: |
|
break |
|
line = line.strip() |
|
|
|
|
|
if not line and len(self.documents[-1]) != 0: |
|
self.documents.append([]) |
|
tokens = tokenizer.tokenize(line) |
|
tokens = tokenizer.convert_tokens_to_ids(tokens) |
|
if tokens: |
|
self.documents[-1].append(tokens) |
|
|
|
logger.info(f"Creating examples from {len(self.documents)} documents.") |
|
self.examples = [] |
|
for doc_index, document in enumerate(self.documents): |
|
self.create_examples_from_document(document, doc_index, block_size) |
|
|
|
start = time.time() |
|
with open(cached_features_file, "wb") as handle: |
|
pickle.dump(self.examples, handle, protocol=pickle.HIGHEST_PROTOCOL) |
|
logger.info( |
|
f"Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]" |
|
) |
|
|
|
def create_examples_from_document(self, document: List[List[int]], doc_index: int, block_size: int): |
|
"""Creates examples for a single document.""" |
|
|
|
max_num_tokens = block_size - self.tokenizer.num_special_tokens_to_add(pair=True) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
target_seq_length = max_num_tokens |
|
if random.random() < self.short_seq_probability: |
|
target_seq_length = random.randint(2, max_num_tokens) |
|
|
|
current_chunk = [] |
|
current_length = 0 |
|
i = 0 |
|
|
|
while i < len(document): |
|
segment = document[i] |
|
current_chunk.append(segment) |
|
current_length += len(segment) |
|
if i == len(document) - 1 or current_length >= target_seq_length: |
|
if current_chunk: |
|
|
|
|
|
a_end = 1 |
|
if len(current_chunk) >= 2: |
|
a_end = random.randint(1, len(current_chunk) - 1) |
|
|
|
tokens_a = [] |
|
for j in range(a_end): |
|
tokens_a.extend(current_chunk[j]) |
|
|
|
tokens_b = [] |
|
|
|
if len(current_chunk) == 1 or random.random() < self.nsp_probability: |
|
is_random_next = True |
|
target_b_length = target_seq_length - len(tokens_a) |
|
|
|
|
|
|
|
|
|
|
|
for _ in range(10): |
|
random_document_index = random.randint(0, len(self.documents) - 1) |
|
if random_document_index != doc_index: |
|
break |
|
|
|
random_document = self.documents[random_document_index] |
|
random_start = random.randint(0, len(random_document) - 1) |
|
for j in range(random_start, len(random_document)): |
|
tokens_b.extend(random_document[j]) |
|
if len(tokens_b) >= target_b_length: |
|
break |
|
|
|
|
|
num_unused_segments = len(current_chunk) - a_end |
|
i -= num_unused_segments |
|
|
|
else: |
|
is_random_next = False |
|
for j in range(a_end, len(current_chunk)): |
|
tokens_b.extend(current_chunk[j]) |
|
|
|
if not (len(tokens_a) >= 1): |
|
raise ValueError(f"Length of sequence a is {len(tokens_a)} which must be no less than 1") |
|
if not (len(tokens_b) >= 1): |
|
raise ValueError(f"Length of sequence b is {len(tokens_b)} which must be no less than 1") |
|
|
|
|
|
input_ids = self.tokenizer.build_inputs_with_special_tokens(tokens_a, tokens_b) |
|
|
|
token_type_ids = self.tokenizer.create_token_type_ids_from_sequences(tokens_a, tokens_b) |
|
|
|
example = { |
|
"input_ids": torch.tensor(input_ids, dtype=torch.long), |
|
"token_type_ids": torch.tensor(token_type_ids, dtype=torch.long), |
|
"next_sentence_label": torch.tensor(1 if is_random_next else 0, dtype=torch.long), |
|
} |
|
|
|
self.examples.append(example) |
|
|
|
current_chunk = [] |
|
current_length = 0 |
|
|
|
i += 1 |
|
|
|
def __len__(self): |
|
return len(self.examples) |
|
|
|
def __getitem__(self, i): |
|
return self.examples[i] |
|
|