Spaces:
Running
on
T4
Running
on
T4
# coding=utf-8 | |
# Copyright 2023 The Intel Labs Team Authors, The Microsoft Research Team Authors and HuggingFace Inc. team. All rights reserved. | |
# | |
# Licensed under the Apache License=, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing=, software | |
# distributed under the License is distributed on an "AS IS" BASIS=, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND=, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
""" BridgeTower model configuration""" | |
import os | |
from typing import Union | |
from ...configuration_utils import PretrainedConfig | |
from ...utils import logging | |
logger = logging.get_logger(__name__) | |
BRIDGETOWER_PRETRAINED_CONFIG_ARCHIVE_MAP = { | |
"BridgeTower/bridgetower-base": "https://huggingface.co/BridgeTower/bridgetower-base/blob/main/config.json", | |
"BridgeTower/bridgetower-base-itm-mlm": ( | |
"https://huggingface.co/BridgeTower/bridgetower-base-itm-mlm/blob/main/config.json" | |
), | |
} | |
class BridgeTowerVisionConfig(PretrainedConfig): | |
r""" | |
This is the configuration class to store the vision configuration of a [`BridgeTowerModel`]. Instantiating a | |
configuration with the defaults will yield a similar configuration to that of the bridgetower-base | |
[BridgeTower/bridgetower-base](https://huggingface.co/BridgeTower/bridgetower-base/) architecture. | |
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the | |
documentation from [`PretrainedConfig`] for more information. | |
Args: | |
hidden_size (`int`, *optional*, defaults to 768): | |
Dimensionality of the encoder layers and the pooler layer. | |
num_hidden_layers (`int`, *optional*, defaults to 12): | |
Number of hidden layers in visual encoder model. | |
patch_size (`int`, *optional*, defaults to 16): | |
The size (resolution) of each patch. | |
image_size (`int`, *optional*, defaults to 288): | |
The size (resolution) of each image. | |
initializer_factor (`float``, *optional*, defaults to 1): | |
A factor for initializing all weight matrices (should be kept to 1, used internally for initialization | |
testing). | |
layer_norm_eps (`float`, *optional*, defaults to 1e-05): | |
The epsilon used by the layer normalization layers. | |
stop_gradient (`bool`, *optional*, defaults to `False`): | |
Whether to stop gradient for training. | |
share_layernorm (`bool`, *optional*, defaults to `True`): | |
Whether LayerNorm layers are shared. | |
remove_last_layer (`bool`, *optional*, defaults to `False`): | |
Whether to remove the last layer from the vision encoder. | |
Example: | |
```python | |
>>> from transformers import BridgeTowerVisionConfig | |
>>> # Initializing a BridgeTower BridgeTower/bridgetower-base style configuration for the vision model | |
>>> configuration = BridgeTowerVisionConfig() | |
>>> # Accessing the configuration | |
>>> configuration | |
```""" | |
model_type = "bridgetower_vision_model" | |
def __init__( | |
self, | |
hidden_size=768, | |
num_hidden_layers=12, | |
num_channels=3, | |
patch_size=16, | |
image_size=288, | |
initializer_factor=1, | |
layer_norm_eps=1e-05, | |
stop_gradient=False, | |
share_layernorm=True, | |
remove_last_layer=False, | |
**kwargs, | |
): | |
super().__init__(**kwargs) | |
self.hidden_size = hidden_size | |
self.num_hidden_layers = num_hidden_layers | |
self.num_channels = num_channels | |
self.patch_size = patch_size | |
self.image_size = image_size | |
self.initializer_factor = initializer_factor | |
self.layer_norm_eps = layer_norm_eps | |
self.stop_gradient = stop_gradient | |
self.share_layernorm = share_layernorm | |
self.remove_last_layer = remove_last_layer | |
def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> "PretrainedConfig": | |
config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs) | |
if config_dict.get("model_type") == "bridgetower": | |
config_dict = config_dict["text_config"] | |
if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type: | |
logger.warning( | |
f"You are using a model of type {config_dict['model_type']} to instantiate a model of type " | |
f"{cls.model_type}. This is not supported for all configurations of models and can yield errors." | |
) | |
return cls.from_dict(config_dict, **kwargs) | |
class BridgeTowerTextConfig(PretrainedConfig): | |
r""" | |
This is the configuration class to store the text configuration of a [`BridgeTowerModel`]. The default values here | |
are copied from RoBERTa. Instantiating a configuration with the defaults will yield a similar configuration to that | |
of the bridgetower-base [BridegTower/bridgetower-base](https://huggingface.co/BridgeTower/bridgetower-base/) | |
architecture. | |
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the | |
documentation from [`PretrainedConfig`] for more information. | |
Args: | |
vocab_size (`int`, *optional*, defaults to 50265): | |
Vocabulary size of the text part of the model. Defines the number of different tokens that can be | |
represented by the `inputs_ids` passed when calling [`BridgeTowerModel`]. | |
hidden_size (`int`, *optional*, defaults to 768): | |
Dimensionality of the encoder layers and the pooler layer. | |
num_hidden_layers (`int`, *optional*, defaults to 12): | |
Number of hidden layers in the Transformer encoder. | |
num_attention_heads (`int`, *optional*, defaults to 12): | |
Number of attention heads for each attention layer in the Transformer encoder. | |
intermediate_size (`int`, *optional*, defaults to 3072): | |
Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer encoder. | |
hidden_act (`str` or `Callable`, *optional*, defaults to `"gelu"`): | |
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, | |
`"relu"`, `"silu"` and `"gelu_new"` are supported. | |
hidden_dropout_prob (`float`, *optional*, defaults to 0.1): | |
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. | |
attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1): | |
The dropout ratio for the attention probabilities. | |
max_position_embeddings (`int`, *optional*, defaults to 514): | |
The maximum sequence length that this model might ever be used with. Typically set this to something large | |
just in case (e.g., 512 or 1024 or 2048). | |
type_vocab_size (`int`, *optional*, defaults to 2): | |
The vocabulary size of the `token_type_ids`. | |
initializer_factor (`float``, *optional*, defaults to 1): | |
A factor for initializing all weight matrices (should be kept to 1, used internally for initialization | |
testing). | |
layer_norm_eps (`float`, *optional*, defaults to 1e-05): | |
The epsilon used by the layer normalization layers. | |
position_embedding_type (`str`, *optional*, defaults to `"absolute"`): | |
Type of position embedding. Choose one of `"absolute"`, `"relative_key"`, `"relative_key_query"`. For | |
positional embeddings use `"absolute"`. For more information on `"relative_key"`, please refer to | |
[Self-Attention with Relative Position Representations (Shaw et al.)](https://arxiv.org/abs/1803.02155). | |
For more information on `"relative_key_query"`, please refer to *Method 4* in [Improve Transformer Models | |
with Better Relative Position Embeddings (Huang et al.)](https://arxiv.org/abs/2009.13658). | |
is_decoder (`bool`, *optional*, defaults to `False`): | |
Whether the model is used as a decoder or not. If `False`, the model is used as an encoder. | |
use_cache (`bool`, *optional*, defaults to `True`): | |
Whether or not the model should return the last key/values attentions (not used by all models). Only | |
relevant if `config.is_decoder=True`. | |
Example: | |
```python | |
>>> from transformers import BridgeTowerTextConfig | |
>>> # Initializing a BridgeTower BridgeTower/bridgetower-base style configuration for the text model | |
>>> configuration = BridgeTowerTextConfig() | |
>>> # Accessing the configuration | |
>>> configuration | |
```""" | |
model_type = "bridgetower_text_model" | |
def __init__( | |
self, | |
vocab_size=50265, | |
hidden_size=768, | |
num_hidden_layers=12, | |
num_attention_heads=12, | |
initializer_factor=1, | |
intermediate_size=3072, | |
hidden_act="gelu", | |
hidden_dropout_prob=0.1, | |
attention_probs_dropout_prob=0.1, | |
max_position_embeddings=514, | |
type_vocab_size=1, | |
layer_norm_eps=1e-05, | |
pad_token_id=1, | |
bos_token_id=0, | |
eos_token_id=2, | |
position_embedding_type="absolute", | |
use_cache=True, | |
**kwargs, | |
): | |
super().__init__(**kwargs) | |
self.vocab_size = vocab_size | |
self.hidden_size = hidden_size | |
self.num_hidden_layers = num_hidden_layers | |
self.num_attention_heads = num_attention_heads | |
self.hidden_act = hidden_act | |
self.initializer_factor = initializer_factor | |
self.intermediate_size = intermediate_size | |
self.hidden_dropout_prob = hidden_dropout_prob | |
self.attention_probs_dropout_prob = attention_probs_dropout_prob | |
self.max_position_embeddings = max_position_embeddings | |
self.type_vocab_size = type_vocab_size | |
self.layer_norm_eps = layer_norm_eps | |
self.position_embedding_type = position_embedding_type | |
self.use_cache = use_cache | |
self.pad_token_id = pad_token_id | |
self.bos_token_id = bos_token_id | |
self.eos_token_id = eos_token_id | |
def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> "PretrainedConfig": | |
config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs) | |
if config_dict.get("model_type") == "bridgetower": | |
config_dict = config_dict["text_config"] | |
if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type: | |
logger.warning( | |
f"You are using a model of type {config_dict['model_type']} to instantiate a model of type " | |
f"{cls.model_type}. This is not supported for all configurations of models and can yield errors." | |
) | |
return cls.from_dict(config_dict, **kwargs) | |
class BridgeTowerConfig(PretrainedConfig): | |
r""" | |
This is the configuration class to store the configuration of a [`BridgeTowerModel`]. It is used to instantiate a | |
BridgeTower model according to the specified arguments, defining the model architecture. Instantiating a | |
configuration with the defaults will yield a similar configuration to that of the bridgetower-base | |
[BridgeTower/bridgetower-base](https://huggingface.co/BridgeTower/bridgetower-base/) architecture. | |
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the | |
documentation from [`PretrainedConfig`] for more information. | |
Args: | |
share_cross_modal_transformer_layers (`bool`, *optional*, defaults to `True`): | |
Whether cross modal transformer layers are shared. | |
hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`): | |
The non-linear activation function (function or string) in the encoder and pooler. | |
hidden_size (`int`, *optional*, defaults to 768): | |
Dimensionality of the encoder layers and the pooler layer. | |
initializer_factor (`float``, *optional*, defaults to 1): | |
A factor for initializing all weight matrices (should be kept to 1, used internally for initialization | |
testing). | |
layer_norm_eps (`float`, *optional*, defaults to 1e-05): | |
The epsilon used by the layer normalization layers. | |
share_link_tower_layers (`bool`, *optional*, defaults to `False`): | |
Whether the bride/link tower layers are shared. | |
link_tower_type (`str`, *optional*, defaults to `"add"`): | |
Type of the bridge/link layer. | |
num_attention_heads (`int`, *optional*, defaults to 12): | |
Number of attention heads for each attention layer in the Transformer encoder. | |
num_hidden_layers (`int`, *optional*, defaults to 6): | |
Number of hidden layers in the Transformer encoder. | |
tie_word_embeddings (`bool`, *optional*, defaults to `False`): | |
Whether to tie input and output embeddings. | |
init_layernorm_from_vision_encoder (`bool`, *optional*, defaults to `False`): | |
Whether to init LayerNorm from the vision encoder. | |
text_config (`dict`, *optional*): | |
Dictionary of configuration options used to initialize [`BridgeTowerTextConfig`]. | |
vision_config (`dict`, *optional*): | |
Dictionary of configuration options used to initialize [`BridgeTowerVisionConfig`]. | |
Example: | |
```python | |
>>> from transformers import BridgeTowerModel, BridgeTowerConfig | |
>>> # Initializing a BridgeTower BridgeTower/bridgetower-base style configuration | |
>>> configuration = BridgeTowerConfig() | |
>>> # Initializing a model from the BridgeTower/bridgetower-base style configuration | |
>>> model = BridgeTowerModel(configuration) | |
>>> # Accessing the model configuration | |
>>> configuration = model.config | |
```""" | |
model_type = "bridgetower" | |
def __init__( | |
self, | |
share_cross_modal_transformer_layers=True, | |
hidden_act="gelu", | |
hidden_size=768, | |
initializer_factor=1, | |
layer_norm_eps=1e-05, | |
share_link_tower_layers=False, | |
link_tower_type="add", | |
num_attention_heads=12, | |
num_hidden_layers=6, | |
tie_word_embeddings=False, | |
init_layernorm_from_vision_encoder=False, | |
text_config=None, | |
vision_config=None, | |
**kwargs, | |
): | |
# TODO: remove this once the Hub files are updated. | |
_ = kwargs.pop("text_config_dict", None) | |
_ = kwargs.pop("vision_config_dict", None) | |
super().__init__(**kwargs) | |
self.share_cross_modal_transformer_layers = share_cross_modal_transformer_layers | |
self.hidden_act = hidden_act | |
self.hidden_size = hidden_size | |
self.initializer_factor = initializer_factor | |
self.layer_norm_eps = layer_norm_eps | |
self.share_link_tower_layers = share_link_tower_layers | |
self.link_tower_type = link_tower_type | |
self.num_attention_heads = num_attention_heads | |
self.num_hidden_layers = num_hidden_layers | |
self.tie_word_embeddings = tie_word_embeddings | |
self.init_layernorm_from_vision_encoder = init_layernorm_from_vision_encoder | |
if text_config is None: | |
text_config = {} | |
logger.info("`text_config` is `None`. Initializing the `BridgeTowerTextConfig` with default values.") | |
if vision_config is None: | |
vision_config = {} | |
logger.info("`vision_config` is `None`. Initializing the `BridgeTowerVisionConfig` with default values.") | |
self.text_config = BridgeTowerTextConfig(**text_config) | |
self.vision_config = BridgeTowerVisionConfig(**vision_config) | |
def from_text_vision_configs( | |
cls, text_config: BridgeTowerTextConfig, vision_config: BridgeTowerVisionConfig, **kwargs | |
): | |
r""" | |
Instantiate a [`BridgeTowerConfig`] (or a derived class) from BridgeTower text model configuration. Returns: | |
[`BridgeTowerConfig`]: An instance of a configuration object | |
""" | |
return cls(text_config=text_config.to_dict(), vision_config=vision_config.to_dict(), **kwargs) | |