Spaces:
Starting
on
T4
Starting
on
T4
import types | |
import warnings | |
from typing import List, Optional, Tuple, Union | |
import numpy as np | |
from ..models.bert.tokenization_bert import BasicTokenizer | |
from ..utils import ( | |
ExplicitEnum, | |
add_end_docstrings, | |
is_tf_available, | |
is_torch_available, | |
) | |
from .base import PIPELINE_INIT_ARGS, ArgumentHandler, ChunkPipeline, Dataset | |
if is_tf_available(): | |
import tensorflow as tf | |
from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES | |
if is_torch_available(): | |
from ..models.auto.modeling_auto import MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES | |
class TokenClassificationArgumentHandler(ArgumentHandler): | |
""" | |
Handles arguments for token classification. | |
""" | |
def __call__(self, inputs: Union[str, List[str]], **kwargs): | |
if inputs is not None and isinstance(inputs, (list, tuple)) and len(inputs) > 0: | |
inputs = list(inputs) | |
batch_size = len(inputs) | |
elif isinstance(inputs, str): | |
inputs = [inputs] | |
batch_size = 1 | |
elif Dataset is not None and isinstance(inputs, Dataset) or isinstance(inputs, types.GeneratorType): | |
return inputs, None | |
else: | |
raise ValueError("At least one input is required.") | |
offset_mapping = kwargs.get("offset_mapping") | |
if offset_mapping: | |
if isinstance(offset_mapping, list) and isinstance(offset_mapping[0], tuple): | |
offset_mapping = [offset_mapping] | |
if len(offset_mapping) != batch_size: | |
raise ValueError("offset_mapping should have the same batch size as the input") | |
return inputs, offset_mapping | |
class AggregationStrategy(ExplicitEnum): | |
"""All the valid aggregation strategies for TokenClassificationPipeline""" | |
NONE = "none" | |
SIMPLE = "simple" | |
FIRST = "first" | |
AVERAGE = "average" | |
MAX = "max" | |
class TokenClassificationPipeline(ChunkPipeline): | |
""" | |
Named Entity Recognition pipeline using any `ModelForTokenClassification`. See the [named entity recognition | |
examples](../task_summary#named-entity-recognition) for more information. | |
Example: | |
```python | |
>>> from transformers import pipeline | |
>>> token_classifier = pipeline(model="Jean-Baptiste/camembert-ner", aggregation_strategy="simple") | |
>>> sentence = "Je m'appelle jean-baptiste et je vis à montréal" | |
>>> tokens = token_classifier(sentence) | |
>>> tokens | |
[{'entity_group': 'PER', 'score': 0.9931, 'word': 'jean-baptiste', 'start': 12, 'end': 26}, {'entity_group': 'LOC', 'score': 0.998, 'word': 'montréal', 'start': 38, 'end': 47}] | |
>>> token = tokens[0] | |
>>> # Start and end provide an easy way to highlight words in the original text. | |
>>> sentence[token["start"] : token["end"]] | |
' jean-baptiste' | |
>>> # Some models use the same idea to do part of speech. | |
>>> syntaxer = pipeline(model="vblagoje/bert-english-uncased-finetuned-pos", aggregation_strategy="simple") | |
>>> syntaxer("My name is Sarah and I live in London") | |
[{'entity_group': 'PRON', 'score': 0.999, 'word': 'my', 'start': 0, 'end': 2}, {'entity_group': 'NOUN', 'score': 0.997, 'word': 'name', 'start': 3, 'end': 7}, {'entity_group': 'AUX', 'score': 0.994, 'word': 'is', 'start': 8, 'end': 10}, {'entity_group': 'PROPN', 'score': 0.999, 'word': 'sarah', 'start': 11, 'end': 16}, {'entity_group': 'CCONJ', 'score': 0.999, 'word': 'and', 'start': 17, 'end': 20}, {'entity_group': 'PRON', 'score': 0.999, 'word': 'i', 'start': 21, 'end': 22}, {'entity_group': 'VERB', 'score': 0.998, 'word': 'live', 'start': 23, 'end': 27}, {'entity_group': 'ADP', 'score': 0.999, 'word': 'in', 'start': 28, 'end': 30}, {'entity_group': 'PROPN', 'score': 0.999, 'word': 'london', 'start': 31, 'end': 37}] | |
``` | |
Learn more about the basics of using a pipeline in the [pipeline tutorial](../pipeline_tutorial) | |
This token recognition pipeline can currently be loaded from [`pipeline`] using the following task identifier: | |
`"ner"` (for predicting the classes of tokens in a sequence: person, organisation, location or miscellaneous). | |
The models that this pipeline can use are models that have been fine-tuned on a token classification task. See the | |
up-to-date list of available models on | |
[huggingface.co/models](https://huggingface.co/models?filter=token-classification). | |
""" | |
default_input_names = "sequences" | |
def __init__(self, args_parser=TokenClassificationArgumentHandler(), *args, **kwargs): | |
super().__init__(*args, **kwargs) | |
self.check_model_type( | |
TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES | |
if self.framework == "tf" | |
else MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES | |
) | |
self._basic_tokenizer = BasicTokenizer(do_lower_case=False) | |
self._args_parser = args_parser | |
def _sanitize_parameters( | |
self, | |
ignore_labels=None, | |
grouped_entities: Optional[bool] = None, | |
ignore_subwords: Optional[bool] = None, | |
aggregation_strategy: Optional[AggregationStrategy] = None, | |
offset_mapping: Optional[List[Tuple[int, int]]] = None, | |
stride: Optional[int] = None, | |
): | |
preprocess_params = {} | |
if offset_mapping is not None: | |
preprocess_params["offset_mapping"] = offset_mapping | |
postprocess_params = {} | |
if grouped_entities is not None or ignore_subwords is not None: | |
if grouped_entities and ignore_subwords: | |
aggregation_strategy = AggregationStrategy.FIRST | |
elif grouped_entities and not ignore_subwords: | |
aggregation_strategy = AggregationStrategy.SIMPLE | |
else: | |
aggregation_strategy = AggregationStrategy.NONE | |
if grouped_entities is not None: | |
warnings.warn( | |
"`grouped_entities` is deprecated and will be removed in version v5.0.0, defaulted to" | |
f' `aggregation_strategy="{aggregation_strategy}"` instead.' | |
) | |
if ignore_subwords is not None: | |
warnings.warn( | |
"`ignore_subwords` is deprecated and will be removed in version v5.0.0, defaulted to" | |
f' `aggregation_strategy="{aggregation_strategy}"` instead.' | |
) | |
if aggregation_strategy is not None: | |
if isinstance(aggregation_strategy, str): | |
aggregation_strategy = AggregationStrategy[aggregation_strategy.upper()] | |
if ( | |
aggregation_strategy | |
in {AggregationStrategy.FIRST, AggregationStrategy.MAX, AggregationStrategy.AVERAGE} | |
and not self.tokenizer.is_fast | |
): | |
raise ValueError( | |
"Slow tokenizers cannot handle subwords. Please set the `aggregation_strategy` option" | |
' to `"simple"` or use a fast tokenizer.' | |
) | |
postprocess_params["aggregation_strategy"] = aggregation_strategy | |
if ignore_labels is not None: | |
postprocess_params["ignore_labels"] = ignore_labels | |
if stride is not None: | |
if stride >= self.tokenizer.model_max_length: | |
raise ValueError( | |
"`stride` must be less than `tokenizer.model_max_length` (or even lower if the tokenizer adds special tokens)" | |
) | |
if aggregation_strategy == AggregationStrategy.NONE: | |
raise ValueError( | |
"`stride` was provided to process all the text but `aggregation_strategy=" | |
f'"{aggregation_strategy}"`, please select another one instead.' | |
) | |
else: | |
if self.tokenizer.is_fast: | |
tokenizer_params = { | |
"return_overflowing_tokens": True, | |
"padding": True, | |
"stride": stride, | |
} | |
preprocess_params["tokenizer_params"] = tokenizer_params | |
else: | |
raise ValueError( | |
"`stride` was provided to process all the text but you're using a slow tokenizer." | |
" Please use a fast tokenizer." | |
) | |
return preprocess_params, {}, postprocess_params | |
def __call__(self, inputs: Union[str, List[str]], **kwargs): | |
""" | |
Classify each token of the text(s) given as inputs. | |
Args: | |
inputs (`str` or `List[str]`): | |
One or several texts (or one list of texts) for token classification. | |
Return: | |
A list or a list of list of `dict`: Each result comes as a list of dictionaries (one for each token in the | |
corresponding input, or each entity if this pipeline was instantiated with an aggregation_strategy) with | |
the following keys: | |
- **word** (`str`) -- The token/word classified. This is obtained by decoding the selected tokens. If you | |
want to have the exact string in the original sentence, use `start` and `end`. | |
- **score** (`float`) -- The corresponding probability for `entity`. | |
- **entity** (`str`) -- The entity predicted for that token/word (it is named *entity_group* when | |
*aggregation_strategy* is not `"none"`. | |
- **index** (`int`, only present when `aggregation_strategy="none"`) -- The index of the corresponding | |
token in the sentence. | |
- **start** (`int`, *optional*) -- The index of the start of the corresponding entity in the sentence. Only | |
exists if the offsets are available within the tokenizer | |
- **end** (`int`, *optional*) -- The index of the end of the corresponding entity in the sentence. Only | |
exists if the offsets are available within the tokenizer | |
""" | |
_inputs, offset_mapping = self._args_parser(inputs, **kwargs) | |
if offset_mapping: | |
kwargs["offset_mapping"] = offset_mapping | |
return super().__call__(inputs, **kwargs) | |
def preprocess(self, sentence, offset_mapping=None, **preprocess_params): | |
tokenizer_params = preprocess_params.pop("tokenizer_params", {}) | |
truncation = True if self.tokenizer.model_max_length and self.tokenizer.model_max_length > 0 else False | |
inputs = self.tokenizer( | |
sentence, | |
return_tensors=self.framework, | |
truncation=truncation, | |
return_special_tokens_mask=True, | |
return_offsets_mapping=self.tokenizer.is_fast, | |
**tokenizer_params, | |
) | |
inputs.pop("overflow_to_sample_mapping", None) | |
num_chunks = len(inputs["input_ids"]) | |
for i in range(num_chunks): | |
if self.framework == "tf": | |
model_inputs = {k: tf.expand_dims(v[i], 0) for k, v in inputs.items()} | |
else: | |
model_inputs = {k: v[i].unsqueeze(0) for k, v in inputs.items()} | |
if offset_mapping is not None: | |
model_inputs["offset_mapping"] = offset_mapping | |
model_inputs["sentence"] = sentence if i == 0 else None | |
model_inputs["is_last"] = i == num_chunks - 1 | |
yield model_inputs | |
def _forward(self, model_inputs): | |
# Forward | |
special_tokens_mask = model_inputs.pop("special_tokens_mask") | |
offset_mapping = model_inputs.pop("offset_mapping", None) | |
sentence = model_inputs.pop("sentence") | |
is_last = model_inputs.pop("is_last") | |
if self.framework == "tf": | |
logits = self.model(**model_inputs)[0] | |
else: | |
output = self.model(**model_inputs) | |
logits = output["logits"] if isinstance(output, dict) else output[0] | |
return { | |
"logits": logits, | |
"special_tokens_mask": special_tokens_mask, | |
"offset_mapping": offset_mapping, | |
"sentence": sentence, | |
"is_last": is_last, | |
**model_inputs, | |
} | |
def postprocess(self, all_outputs, aggregation_strategy=AggregationStrategy.NONE, ignore_labels=None): | |
if ignore_labels is None: | |
ignore_labels = ["O"] | |
all_entities = [] | |
for model_outputs in all_outputs: | |
logits = model_outputs["logits"][0].numpy() | |
sentence = all_outputs[0]["sentence"] | |
input_ids = model_outputs["input_ids"][0] | |
offset_mapping = ( | |
model_outputs["offset_mapping"][0] if model_outputs["offset_mapping"] is not None else None | |
) | |
special_tokens_mask = model_outputs["special_tokens_mask"][0].numpy() | |
maxes = np.max(logits, axis=-1, keepdims=True) | |
shifted_exp = np.exp(logits - maxes) | |
scores = shifted_exp / shifted_exp.sum(axis=-1, keepdims=True) | |
if self.framework == "tf": | |
input_ids = input_ids.numpy() | |
offset_mapping = offset_mapping.numpy() if offset_mapping is not None else None | |
pre_entities = self.gather_pre_entities( | |
sentence, input_ids, scores, offset_mapping, special_tokens_mask, aggregation_strategy | |
) | |
grouped_entities = self.aggregate(pre_entities, aggregation_strategy) | |
# Filter anything that is in self.ignore_labels | |
entities = [ | |
entity | |
for entity in grouped_entities | |
if entity.get("entity", None) not in ignore_labels | |
and entity.get("entity_group", None) not in ignore_labels | |
] | |
all_entities.extend(entities) | |
num_chunks = len(all_outputs) | |
if num_chunks > 1: | |
all_entities = self.aggregate_overlapping_entities(all_entities) | |
return all_entities | |
def aggregate_overlapping_entities(self, entities): | |
if len(entities) == 0: | |
return entities | |
entities = sorted(entities, key=lambda x: x["start"]) | |
aggregated_entities = [] | |
previous_entity = entities[0] | |
for entity in entities: | |
if previous_entity["start"] <= entity["start"] < previous_entity["end"]: | |
current_length = entity["end"] - entity["start"] | |
previous_length = previous_entity["end"] - previous_entity["start"] | |
if current_length > previous_length: | |
previous_entity = entity | |
elif current_length == previous_length and entity["score"] > previous_entity["score"]: | |
previous_entity = entity | |
else: | |
aggregated_entities.append(previous_entity) | |
previous_entity = entity | |
aggregated_entities.append(previous_entity) | |
return aggregated_entities | |
def gather_pre_entities( | |
self, | |
sentence: str, | |
input_ids: np.ndarray, | |
scores: np.ndarray, | |
offset_mapping: Optional[List[Tuple[int, int]]], | |
special_tokens_mask: np.ndarray, | |
aggregation_strategy: AggregationStrategy, | |
) -> List[dict]: | |
"""Fuse various numpy arrays into dicts with all the information needed for aggregation""" | |
pre_entities = [] | |
for idx, token_scores in enumerate(scores): | |
# Filter special_tokens | |
if special_tokens_mask[idx]: | |
continue | |
word = self.tokenizer.convert_ids_to_tokens(int(input_ids[idx])) | |
if offset_mapping is not None: | |
start_ind, end_ind = offset_mapping[idx] | |
if not isinstance(start_ind, int): | |
if self.framework == "pt": | |
start_ind = start_ind.item() | |
end_ind = end_ind.item() | |
word_ref = sentence[start_ind:end_ind] | |
if getattr(self.tokenizer, "_tokenizer", None) and getattr( | |
self.tokenizer._tokenizer.model, "continuing_subword_prefix", None | |
): | |
# This is a BPE, word aware tokenizer, there is a correct way | |
# to fuse tokens | |
is_subword = len(word) != len(word_ref) | |
else: | |
# This is a fallback heuristic. This will fail most likely on any kind of text + punctuation mixtures that will be considered "words". Non word aware models cannot do better than this unfortunately. | |
if aggregation_strategy in { | |
AggregationStrategy.FIRST, | |
AggregationStrategy.AVERAGE, | |
AggregationStrategy.MAX, | |
}: | |
warnings.warn( | |
"Tokenizer does not support real words, using fallback heuristic", | |
UserWarning, | |
) | |
is_subword = start_ind > 0 and " " not in sentence[start_ind - 1 : start_ind + 1] | |
if int(input_ids[idx]) == self.tokenizer.unk_token_id: | |
word = word_ref | |
is_subword = False | |
else: | |
start_ind = None | |
end_ind = None | |
is_subword = False | |
pre_entity = { | |
"word": word, | |
"scores": token_scores, | |
"start": start_ind, | |
"end": end_ind, | |
"index": idx, | |
"is_subword": is_subword, | |
} | |
pre_entities.append(pre_entity) | |
return pre_entities | |
def aggregate(self, pre_entities: List[dict], aggregation_strategy: AggregationStrategy) -> List[dict]: | |
if aggregation_strategy in {AggregationStrategy.NONE, AggregationStrategy.SIMPLE}: | |
entities = [] | |
for pre_entity in pre_entities: | |
entity_idx = pre_entity["scores"].argmax() | |
score = pre_entity["scores"][entity_idx] | |
entity = { | |
"entity": self.model.config.id2label[entity_idx], | |
"score": score, | |
"index": pre_entity["index"], | |
"word": pre_entity["word"], | |
"start": pre_entity["start"], | |
"end": pre_entity["end"], | |
} | |
entities.append(entity) | |
else: | |
entities = self.aggregate_words(pre_entities, aggregation_strategy) | |
if aggregation_strategy == AggregationStrategy.NONE: | |
return entities | |
return self.group_entities(entities) | |
def aggregate_word(self, entities: List[dict], aggregation_strategy: AggregationStrategy) -> dict: | |
word = self.tokenizer.convert_tokens_to_string([entity["word"] for entity in entities]) | |
if aggregation_strategy == AggregationStrategy.FIRST: | |
scores = entities[0]["scores"] | |
idx = scores.argmax() | |
score = scores[idx] | |
entity = self.model.config.id2label[idx] | |
elif aggregation_strategy == AggregationStrategy.MAX: | |
max_entity = max(entities, key=lambda entity: entity["scores"].max()) | |
scores = max_entity["scores"] | |
idx = scores.argmax() | |
score = scores[idx] | |
entity = self.model.config.id2label[idx] | |
elif aggregation_strategy == AggregationStrategy.AVERAGE: | |
scores = np.stack([entity["scores"] for entity in entities]) | |
average_scores = np.nanmean(scores, axis=0) | |
entity_idx = average_scores.argmax() | |
entity = self.model.config.id2label[entity_idx] | |
score = average_scores[entity_idx] | |
else: | |
raise ValueError("Invalid aggregation_strategy") | |
new_entity = { | |
"entity": entity, | |
"score": score, | |
"word": word, | |
"start": entities[0]["start"], | |
"end": entities[-1]["end"], | |
} | |
return new_entity | |
def aggregate_words(self, entities: List[dict], aggregation_strategy: AggregationStrategy) -> List[dict]: | |
""" | |
Override tokens from a given word that disagree to force agreement on word boundaries. | |
Example: micro|soft| com|pany| B-ENT I-NAME I-ENT I-ENT will be rewritten with first strategy as microsoft| | |
company| B-ENT I-ENT | |
""" | |
if aggregation_strategy in { | |
AggregationStrategy.NONE, | |
AggregationStrategy.SIMPLE, | |
}: | |
raise ValueError("NONE and SIMPLE strategies are invalid for word aggregation") | |
word_entities = [] | |
word_group = None | |
for entity in entities: | |
if word_group is None: | |
word_group = [entity] | |
elif entity["is_subword"]: | |
word_group.append(entity) | |
else: | |
word_entities.append(self.aggregate_word(word_group, aggregation_strategy)) | |
word_group = [entity] | |
# Last item | |
if word_group is not None: | |
word_entities.append(self.aggregate_word(word_group, aggregation_strategy)) | |
return word_entities | |
def group_sub_entities(self, entities: List[dict]) -> dict: | |
""" | |
Group together the adjacent tokens with the same entity predicted. | |
Args: | |
entities (`dict`): The entities predicted by the pipeline. | |
""" | |
# Get the first entity in the entity group | |
entity = entities[0]["entity"].split("-")[-1] | |
scores = np.nanmean([entity["score"] for entity in entities]) | |
tokens = [entity["word"] for entity in entities] | |
entity_group = { | |
"entity_group": entity, | |
"score": np.mean(scores), | |
"word": self.tokenizer.convert_tokens_to_string(tokens), | |
"start": entities[0]["start"], | |
"end": entities[-1]["end"], | |
} | |
return entity_group | |
def get_tag(self, entity_name: str) -> Tuple[str, str]: | |
if entity_name.startswith("B-"): | |
bi = "B" | |
tag = entity_name[2:] | |
elif entity_name.startswith("I-"): | |
bi = "I" | |
tag = entity_name[2:] | |
else: | |
# It's not in B-, I- format | |
# Default to I- for continuation. | |
bi = "I" | |
tag = entity_name | |
return bi, tag | |
def group_entities(self, entities: List[dict]) -> List[dict]: | |
""" | |
Find and group together the adjacent tokens with the same entity predicted. | |
Args: | |
entities (`dict`): The entities predicted by the pipeline. | |
""" | |
entity_groups = [] | |
entity_group_disagg = [] | |
for entity in entities: | |
if not entity_group_disagg: | |
entity_group_disagg.append(entity) | |
continue | |
# If the current entity is similar and adjacent to the previous entity, | |
# append it to the disaggregated entity group | |
# The split is meant to account for the "B" and "I" prefixes | |
# Shouldn't merge if both entities are B-type | |
bi, tag = self.get_tag(entity["entity"]) | |
last_bi, last_tag = self.get_tag(entity_group_disagg[-1]["entity"]) | |
if tag == last_tag and bi != "B": | |
# Modify subword type to be previous_type | |
entity_group_disagg.append(entity) | |
else: | |
# If the current entity is different from the previous entity | |
# aggregate the disaggregated entity group | |
entity_groups.append(self.group_sub_entities(entity_group_disagg)) | |
entity_group_disagg = [entity] | |
if entity_group_disagg: | |
# it's the last entity, add it to the entity groups | |
entity_groups.append(self.group_sub_entities(entity_group_disagg)) | |
return entity_groups | |
NerPipeline = TokenClassificationPipeline | |