Spaces:
Running
on
T4
Running
on
T4
from typing import List, Union | |
import numpy as np | |
from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends | |
from .base import PIPELINE_INIT_ARGS, Pipeline | |
if is_vision_available(): | |
from PIL import Image | |
from ..image_utils import load_image | |
if is_torch_available(): | |
import torch | |
from ..models.auto.modeling_auto import MODEL_FOR_DEPTH_ESTIMATION_MAPPING_NAMES | |
logger = logging.get_logger(__name__) | |
class DepthEstimationPipeline(Pipeline): | |
""" | |
Depth estimation pipeline using any `AutoModelForDepthEstimation`. This pipeline predicts the depth of an image. | |
Example: | |
```python | |
>>> from transformers import pipeline | |
>>> depth_estimator = pipeline(task="depth-estimation", model="Intel/dpt-large") | |
>>> output = depth_estimator("http://images.cocodataset.org/val2017/000000039769.jpg") | |
>>> # This is a tensor with the values being the depth expressed in meters for each pixel | |
>>> output["predicted_depth"].shape | |
torch.Size([1, 384, 384]) | |
``` | |
Learn more about the basics of using a pipeline in the [pipeline tutorial](../pipeline_tutorial) | |
This depth estimation pipeline can currently be loaded from [`pipeline`] using the following task identifier: | |
`"depth-estimation"`. | |
See the list of available models on [huggingface.co/models](https://huggingface.co/models?filter=depth-estimation). | |
""" | |
def __init__(self, *args, **kwargs): | |
super().__init__(*args, **kwargs) | |
requires_backends(self, "vision") | |
self.check_model_type(MODEL_FOR_DEPTH_ESTIMATION_MAPPING_NAMES) | |
def __call__(self, images: Union[str, List[str], "Image.Image", List["Image.Image"]], **kwargs): | |
""" | |
Assign labels to the image(s) passed as inputs. | |
Args: | |
images (`str`, `List[str]`, `PIL.Image` or `List[PIL.Image]`): | |
The pipeline handles three types of images: | |
- A string containing a http link pointing to an image | |
- A string containing a local path to an image | |
- An image loaded in PIL directly | |
The pipeline accepts either a single image or a batch of images, which must then be passed as a string. | |
Images in a batch must all be in the same format: all as http links, all as local paths, or all as PIL | |
images. | |
top_k (`int`, *optional*, defaults to 5): | |
The number of top labels that will be returned by the pipeline. If the provided number is higher than | |
the number of labels available in the model configuration, it will default to the number of labels. | |
timeout (`float`, *optional*, defaults to None): | |
The maximum time in seconds to wait for fetching images from the web. If None, no timeout is set and | |
the call may block forever. | |
Return: | |
A dictionary or a list of dictionaries containing result. If the input is a single image, will return a | |
dictionary, if the input is a list of several images, will return a list of dictionaries corresponding to | |
the images. | |
The dictionaries contain the following keys: | |
- **label** (`str`) -- The label identified by the model. | |
- **score** (`int`) -- The score attributed by the model for that label. | |
""" | |
return super().__call__(images, **kwargs) | |
def _sanitize_parameters(self, timeout=None, **kwargs): | |
preprocess_params = {} | |
if timeout is not None: | |
preprocess_params["timeout"] = timeout | |
return preprocess_params, {}, {} | |
def preprocess(self, image, timeout=None): | |
image = load_image(image, timeout) | |
self.image_size = image.size | |
model_inputs = self.image_processor(images=image, return_tensors=self.framework) | |
return model_inputs | |
def _forward(self, model_inputs): | |
model_outputs = self.model(**model_inputs) | |
return model_outputs | |
def postprocess(self, model_outputs): | |
predicted_depth = model_outputs.predicted_depth | |
prediction = torch.nn.functional.interpolate( | |
predicted_depth.unsqueeze(1), size=self.image_size[::-1], mode="bicubic", align_corners=False | |
) | |
output = prediction.squeeze().cpu().numpy() | |
formatted = (output * 255 / np.max(output)).astype("uint8") | |
depth = Image.fromarray(formatted) | |
output_dict = {} | |
output_dict["predicted_depth"] = predicted_depth | |
output_dict["depth"] = depth | |
return output_dict | |