|
|
|
import warnings |
|
warnings.filterwarnings('ignore') |
|
|
|
import subprocess, io, os, sys, time |
|
|
|
os.system("pip install gradio==4.42.0") |
|
|
|
import gradio as gr |
|
from loguru import logger |
|
|
|
os.environ["CUDA_VISIBLE_DEVICES"] = "0" |
|
|
|
if os.environ.get('IS_MY_DEBUG') is None: |
|
result = subprocess.run(['pip', 'install', '-e', 'GroundingDINO'], check=True) |
|
logger.info(f'pip install GroundingDINO = {result}') |
|
|
|
logger.info(f"Start app...") |
|
|
|
|
|
|
|
|
|
sys.path.insert(0, './GroundingDINO') |
|
|
|
import argparse |
|
import copy |
|
|
|
import numpy as np |
|
import torch |
|
from PIL import Image, ImageDraw, ImageFont, ImageOps |
|
|
|
|
|
import GroundingDINO.groundingdino.datasets.transforms as T |
|
from GroundingDINO.groundingdino.models import build_model |
|
from GroundingDINO.groundingdino.util import box_ops |
|
from GroundingDINO.groundingdino.util.slconfig import SLConfig |
|
from GroundingDINO.groundingdino.util.utils import clean_state_dict, get_phrases_from_posmap |
|
|
|
import cv2 |
|
import numpy as np |
|
import matplotlib |
|
matplotlib.use('AGG') |
|
plt = matplotlib.pyplot |
|
|
|
|
|
groundingdino_enable = True |
|
sam_enable = True |
|
inpainting_enable = True |
|
ram_enable = False |
|
|
|
lama_cleaner_enable = True |
|
|
|
kosmos_enable = False |
|
|
|
|
|
|
|
|
|
if os.environ.get('IS_MY_DEBUG') is not None: |
|
sam_enable = False |
|
ram_enable = False |
|
|
|
kosmos_enable = False |
|
|
|
if lama_cleaner_enable: |
|
try: |
|
from lama_cleaner.model_manager import ModelManager |
|
from lama_cleaner.schema import Config as lama_Config |
|
except Exception as e: |
|
lama_cleaner_enable = False |
|
|
|
|
|
from segment_anything import build_sam, SamPredictor, SamAutomaticMaskGenerator |
|
|
|
|
|
import PIL |
|
import requests |
|
from io import BytesIO |
|
from diffusers import StableDiffusionInpaintPipeline |
|
from huggingface_hub import hf_hub_download |
|
|
|
from util_computer import computer_info |
|
|
|
|
|
from ram_utils import iou, sort_and_deduplicate, relation_classes, MLP, show_anns, ram_show_mask |
|
from ram_train_eval import RamModel, RamPredictor |
|
from mmengine.config import Config as mmengine_Config |
|
|
|
if lama_cleaner_enable: |
|
from lama_cleaner.helper import ( |
|
load_img, |
|
numpy_to_bytes, |
|
resize_max_size, |
|
) |
|
|
|
|
|
import ast |
|
|
|
if kosmos_enable: |
|
os.system("pip install transformers@git+https://github.com/huggingface/transformers.git@main") |
|
|
|
|
|
from kosmos_utils import * |
|
|
|
from util_tencent import getTextTrans |
|
|
|
huggingface_token = os.getenv("HUGGINGFACE_TOKEN") |
|
|
|
config_file = 'GroundingDINO/groundingdino/config/GroundingDINO_SwinT_OGC.py' |
|
ckpt_repo_id = "ShilongLiu/GroundingDINO" |
|
ckpt_filenmae = "groundingdino_swint_ogc.pth" |
|
sam_checkpoint = './sam_vit_h_4b8939.pth' |
|
output_dir = "outputs" |
|
|
|
device = 'cpu' |
|
os.makedirs(output_dir, exist_ok=True) |
|
groundingdino_model = None |
|
sam_device = None |
|
sam_model = None |
|
sam_predictor = None |
|
sam_mask_generator = None |
|
sd_model = None |
|
lama_cleaner_model= None |
|
ram_model = None |
|
kosmos_model = None |
|
kosmos_processor = None |
|
|
|
MAX_SEED = np.iinfo(np.int32).max |
|
|
|
def load_model_hf(model_config_path, repo_id, filename, device='cpu'): |
|
args = SLConfig.fromfile(model_config_path) |
|
model = build_model(args) |
|
args.device = device |
|
|
|
cache_file = hf_hub_download(repo_id=repo_id, filename=filename) |
|
checkpoint = torch.load(cache_file, map_location=device) |
|
log = model.load_state_dict(clean_state_dict(checkpoint['model']), strict=False) |
|
logger.info("Model loaded from {} \n => {}".format(cache_file, log)) |
|
_ = model.eval() |
|
return model |
|
|
|
def plot_boxes_to_image(image_pil, tgt): |
|
H, W = tgt["size"] |
|
boxes = tgt["boxes"] |
|
labels = tgt["labels"] |
|
assert len(boxes) == len(labels), "boxes and labels must have same length" |
|
|
|
draw = ImageDraw.Draw(image_pil) |
|
mask = Image.new("L", image_pil.size, 0) |
|
mask_draw = ImageDraw.Draw(mask) |
|
|
|
|
|
for box, label in zip(boxes, labels): |
|
|
|
box = box * torch.Tensor([W, H, W, H]) |
|
|
|
box[:2] -= box[2:] / 2 |
|
box[2:] += box[:2] |
|
|
|
color = tuple(np.random.randint(0, 255, size=3).tolist()) |
|
|
|
x0, y0, x1, y1 = box |
|
x0, y0, x1, y1 = int(x0), int(y0), int(x1), int(y1) |
|
|
|
draw.rectangle([x0, y0, x1, y1], outline=color, width=6) |
|
|
|
|
|
font = ImageFont.load_default() |
|
if hasattr(font, "getbbox"): |
|
bbox = draw.textbbox((x0, y0), str(label), font) |
|
else: |
|
w, h = draw.textsize(str(label), font) |
|
bbox = (x0, y0, w + x0, y0 + h) |
|
|
|
draw.rectangle(bbox, fill=color) |
|
|
|
try: |
|
font = os.path.join(cv2.__path__[0],'qt','fonts','DejaVuSans.ttf') |
|
font_size = 36 |
|
new_font = ImageFont.truetype(font, font_size) |
|
|
|
draw.text((x0+2, y0+2), str(label), font=new_font, fill="white") |
|
except Exception as e: |
|
pass |
|
|
|
mask_draw.rectangle([x0, y0, x1, y1], fill=255, width=6) |
|
|
|
return image_pil, mask |
|
|
|
def load_image(image_path): |
|
|
|
if isinstance(image_path, PIL.Image.Image): |
|
image_pil = image_path |
|
else: |
|
image_pil = Image.open(image_path).convert("RGB") |
|
|
|
transform = T.Compose( |
|
[ |
|
T.RandomResize([800], max_size=1333), |
|
T.ToTensor(), |
|
T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]), |
|
] |
|
) |
|
image, _ = transform(image_pil, None) |
|
return image_pil, image |
|
|
|
def get_grounding_output(model, image, caption, box_threshold, text_threshold, with_logits=True, device="cpu"): |
|
caption = caption.lower() |
|
caption = caption.strip() |
|
if not caption.endswith("."): |
|
caption = caption + "." |
|
model = model.to(device) |
|
image = image.to(device) |
|
with torch.no_grad(): |
|
outputs = model(image[None], captions=[caption]) |
|
logits = outputs["pred_logits"].cpu().sigmoid()[0] |
|
boxes = outputs["pred_boxes"].cpu()[0] |
|
logits.shape[0] |
|
|
|
|
|
logits_filt = logits.clone() |
|
boxes_filt = boxes.clone() |
|
filt_mask = logits_filt.max(dim=1)[0] > box_threshold |
|
logits_filt = logits_filt[filt_mask] |
|
boxes_filt = boxes_filt[filt_mask] |
|
logits_filt.shape[0] |
|
|
|
|
|
tokenlizer = model.tokenizer |
|
tokenized = tokenlizer(caption) |
|
|
|
pred_phrases = [] |
|
for logit, box in zip(logits_filt, boxes_filt): |
|
pred_phrase = get_phrases_from_posmap(logit > text_threshold, tokenized, tokenlizer) |
|
if with_logits: |
|
pred_phrases.append(pred_phrase + f"({str(logit.max().item())[:4]})") |
|
else: |
|
pred_phrases.append(pred_phrase) |
|
|
|
return boxes_filt, pred_phrases |
|
|
|
def show_mask(mask, ax, random_color=False): |
|
if random_color: |
|
color = np.concatenate([np.random.random(3), np.array([0.6])], axis=0) |
|
else: |
|
color = np.array([30/255, 144/255, 255/255, 0.6]) |
|
h, w = mask.shape[-2:] |
|
mask_image = mask.reshape(h, w, 1) * color.reshape(1, 1, -1) |
|
ax.imshow(mask_image) |
|
|
|
def show_box(box, ax, label): |
|
x0, y0 = box[0], box[1] |
|
w, h = box[2] - box[0], box[3] - box[1] |
|
ax.add_patch(plt.Rectangle((x0, y0), w, h, edgecolor='green', facecolor=(0,0,0,0), lw=2)) |
|
ax.text(x0, y0, label) |
|
|
|
def xywh_to_xyxy(box, sizeW, sizeH): |
|
if isinstance(box, list): |
|
box = torch.Tensor(box) |
|
box = box * torch.Tensor([sizeW, sizeH, sizeW, sizeH]) |
|
box[:2] -= box[2:] / 2 |
|
box[2:] += box[:2] |
|
box = box.numpy() |
|
return box |
|
|
|
def mask_extend(img, box, extend_pixels=10, useRectangle=True): |
|
box[0] = int(box[0]) |
|
box[1] = int(box[1]) |
|
box[2] = int(box[2]) |
|
box[3] = int(box[3]) |
|
region = img.crop(tuple(box)) |
|
new_width = box[2] - box[0] + 2*extend_pixels |
|
new_height = box[3] - box[1] + 2*extend_pixels |
|
|
|
region_BILINEAR = region.resize((int(new_width), int(new_height))) |
|
if useRectangle: |
|
region_draw = ImageDraw.Draw(region_BILINEAR) |
|
region_draw.rectangle((0, 0, new_width, new_height), fill=(255, 255, 255)) |
|
img.paste(region_BILINEAR, (int(box[0]-extend_pixels), int(box[1]-extend_pixels))) |
|
return img |
|
|
|
def mix_masks(imgs): |
|
re_img = 1 - np.asarray(imgs[0].convert("1")) |
|
for i in range(len(imgs)-1): |
|
re_img = np.multiply(re_img, 1 - np.asarray(imgs[i+1].convert("1"))) |
|
re_img = 1 - re_img |
|
return Image.fromarray(np.uint8(255*re_img)) |
|
|
|
def set_device(args): |
|
global device |
|
if os.environ.get('IS_MY_DEBUG') is None: |
|
device = args.cuda if torch.cuda.is_available() else 'cpu' |
|
else: |
|
device = 'cpu' |
|
logger.info(f'device={device}') |
|
|
|
def load_groundingdino_model(device): |
|
|
|
global groundingdino_model |
|
logger.info(f"initialize groundingdino model...") |
|
groundingdino_model = load_model_hf(config_file, ckpt_repo_id, ckpt_filenmae, device=device) |
|
logger.info(f"initialize groundingdino model...{type(groundingdino_model)}") |
|
|
|
def get_sam_vit_h_4b8939(): |
|
if not os.path.exists('./sam_vit_h_4b8939.pth'): |
|
logger.info(f"get sam_vit_h_4b8939.pth...") |
|
result = subprocess.run(['wget', '-nv', 'https://dl.fbaipublicfiles.com/segment_anything/sam_vit_h_4b8939.pth'], check=True) |
|
logger.info(f'wget sam_vit_h_4b8939.pth result = {result}') |
|
|
|
def load_sam_model(device): |
|
|
|
global sam_model, sam_predictor, sam_mask_generator, sam_device |
|
get_sam_vit_h_4b8939() |
|
logger.info(f"initialize SAM model...") |
|
sam_device = device |
|
sam_model = build_sam(checkpoint=sam_checkpoint).to(sam_device) |
|
sam_predictor = SamPredictor(sam_model) |
|
sam_mask_generator = SamAutomaticMaskGenerator(sam_model) |
|
|
|
def load_sd_model(device): |
|
|
|
global sd_model |
|
logger.info(f"initialize stable-diffusion-inpainting...") |
|
sd_model = None |
|
''' |
|
if os.environ.get('IS_MY_DEBUG') is None: |
|
# sd_model = StableDiffusionInpaintPipeline.from_pretrained( |
|
# "runwayml/stable-diffusion-inpainting", |
|
# revision="fp16", |
|
# # "stabilityai/stable-diffusion-2-inpainting", |
|
# torch_dtype=torch.float16, |
|
# ) |
|
# sd_model = sd_model.to(device) |
|
''' |
|
|
|
def load_lama_cleaner_model(device): |
|
|
|
global lama_cleaner_model |
|
logger.info(f"initialize lama_cleaner...") |
|
|
|
lama_cleaner_model = ModelManager( |
|
name='lama', |
|
device=device, |
|
) |
|
|
|
def lama_cleaner_process(image, mask, cleaner_size_limit=1080): |
|
try: |
|
logger.info(f'_______lama_cleaner_process_______1____') |
|
ori_image = image |
|
if mask.shape[0] == image.shape[1] and mask.shape[1] == image.shape[0] and mask.shape[0] != mask.shape[1]: |
|
|
|
logger.info(f'_______lama_cleaner_process_______2____') |
|
ori_image = np.transpose(image[::-1, ...][:, ::-1], axes=(1, 0, 2))[::-1, ...] |
|
logger.info(f'_______lama_cleaner_process_______3____') |
|
image = ori_image |
|
|
|
logger.info(f'_______lama_cleaner_process_______4____') |
|
original_shape = ori_image.shape |
|
logger.info(f'_______lama_cleaner_process_______5____') |
|
interpolation = cv2.INTER_CUBIC |
|
|
|
size_limit = cleaner_size_limit |
|
if size_limit == -1: |
|
logger.info(f'_______lama_cleaner_process_______6____') |
|
size_limit = max(image.shape) |
|
else: |
|
logger.info(f'_______lama_cleaner_process_______7____') |
|
size_limit = int(size_limit) |
|
|
|
logger.info(f'_______lama_cleaner_process_______8____') |
|
config = lama_Config( |
|
ldm_steps=25, |
|
ldm_sampler='plms', |
|
zits_wireframe=True, |
|
hd_strategy='Original', |
|
hd_strategy_crop_margin=196, |
|
hd_strategy_crop_trigger_size=1280, |
|
hd_strategy_resize_limit=2048, |
|
prompt='', |
|
use_croper=False, |
|
croper_x=0, |
|
croper_y=0, |
|
croper_height=512, |
|
croper_width=512, |
|
sd_mask_blur=5, |
|
sd_strength=0.75, |
|
sd_steps=50, |
|
sd_guidance_scale=7.5, |
|
sd_sampler='ddim', |
|
sd_seed=42, |
|
cv2_flag='INPAINT_NS', |
|
cv2_radius=5, |
|
) |
|
|
|
logger.info(f'_______lama_cleaner_process_______9____') |
|
if config.sd_seed == -1: |
|
config.sd_seed = random.randint(1, MAX_SEED) |
|
|
|
|
|
logger.info(f'_______lama_cleaner_process_______10____') |
|
image = resize_max_size(image, size_limit=size_limit, interpolation=interpolation) |
|
|
|
|
|
|
|
logger.info(f'_______lama_cleaner_process_______11____') |
|
mask = resize_max_size(mask, size_limit=size_limit, interpolation=interpolation) |
|
|
|
|
|
logger.info(f'_______lama_cleaner_process_______12____') |
|
res_np_img = lama_cleaner_model(image, mask, config) |
|
logger.info(f'_______lama_cleaner_process_______13____') |
|
torch.cuda.empty_cache() |
|
|
|
logger.info(f'_______lama_cleaner_process_______14____') |
|
image = Image.open(io.BytesIO(numpy_to_bytes(res_np_img, 'png'))) |
|
logger.info(f'_______lama_cleaner_process_______15____') |
|
except Exception as e: |
|
logger.info(f'lama_cleaner_process[Error]:' + str(e)) |
|
image = None |
|
return image |
|
|
|
class Ram_Predictor(RamPredictor): |
|
def __init__(self, config, device='cpu'): |
|
self.config = config |
|
self.device = torch.device(device) |
|
self._build_model() |
|
|
|
def _build_model(self): |
|
self.model = RamModel(**self.config.model).to(self.device) |
|
if self.config.load_from is not None: |
|
self.model.load_state_dict(torch.load(self.config.load_from, map_location=self.device)) |
|
self.model.train() |
|
|
|
def load_ram_model(device): |
|
|
|
global ram_model |
|
if os.environ.get('IS_MY_DEBUG') is not None: |
|
return |
|
model_path = "./checkpoints/ram_epoch12.pth" |
|
ram_config = dict( |
|
model=dict( |
|
pretrained_model_name_or_path='bert-base-uncased', |
|
load_pretrained_weights=False, |
|
num_transformer_layer=2, |
|
input_feature_size=256, |
|
output_feature_size=768, |
|
cls_feature_size=512, |
|
num_relation_classes=56, |
|
pred_type='attention', |
|
loss_type='multi_label_ce', |
|
), |
|
load_from=model_path, |
|
) |
|
ram_config = mmengine_Config(ram_config) |
|
ram_model = Ram_Predictor(ram_config, device) |
|
|
|
|
|
def draw_selected_mask(mask, draw): |
|
color = (255, 0, 0, 153) |
|
nonzero_coords = np.transpose(np.nonzero(mask)) |
|
for coord in nonzero_coords: |
|
draw.point(coord[::-1], fill=color) |
|
|
|
def draw_object_mask(mask, draw): |
|
color = (0, 0, 255, 153) |
|
nonzero_coords = np.transpose(np.nonzero(mask)) |
|
for coord in nonzero_coords: |
|
draw.point(coord[::-1], fill=color) |
|
|
|
def create_title_image(word1, word2, word3, width, font_path='./assets/OpenSans-Bold.ttf'): |
|
|
|
color_red = (255, 0, 0) |
|
color_black = (0, 0, 0) |
|
color_blue = (0, 0, 255) |
|
|
|
|
|
font_size = 40 |
|
|
|
|
|
image = Image.new('RGB', (width, 60), (255, 255, 255)) |
|
|
|
try: |
|
|
|
font = ImageFont.truetype(font_path, font_size) |
|
|
|
|
|
while True: |
|
|
|
draw = ImageDraw.Draw(image) |
|
|
|
word_spacing = font_size / 2 |
|
|
|
x_offset = word_spacing |
|
draw.text((x_offset, 0), word1, color_red, font=font) |
|
x_offset += font.getsize(word1)[0] + word_spacing |
|
draw.text((x_offset, 0), word2, color_black, font=font) |
|
x_offset += font.getsize(word2)[0] + word_spacing |
|
draw.text((x_offset, 0), word3, color_blue, font=font) |
|
|
|
word_sizes = [font.getsize(word) for word in [word1, word2, word3]] |
|
total_width = sum([size[0] for size in word_sizes]) + word_spacing * 3 |
|
|
|
|
|
if total_width <= width: |
|
break |
|
|
|
|
|
font_size -= 1 |
|
image = Image.new('RGB', (width, 50), (255, 255, 255)) |
|
font = ImageFont.truetype(font_path, font_size) |
|
draw = None |
|
except Exception as e: |
|
pass |
|
|
|
return image |
|
|
|
def concatenate_images_vertical(image1, image2): |
|
|
|
width1, height1 = image1.size |
|
width2, height2 = image2.size |
|
|
|
|
|
new_image = Image.new('RGBA', (max(width1, width2), height1 + height2)) |
|
|
|
|
|
new_image.paste(image1, (0, 0)) |
|
|
|
|
|
new_image.paste(image2, (0, height1)) |
|
|
|
return new_image |
|
|
|
def relate_anything(input_image, k): |
|
logger.info(f'relate_anything_1_{input_image.size}_') |
|
w, h = input_image.size |
|
max_edge = 1500 |
|
if w > max_edge or h > max_edge: |
|
ratio = max(w, h) / max_edge |
|
new_size = (int(w / ratio), int(h / ratio)) |
|
input_image.thumbnail(new_size) |
|
|
|
logger.info(f'relate_anything_2_') |
|
|
|
pil_image = input_image.convert('RGBA') |
|
image = np.array(input_image) |
|
sam_masks = sam_mask_generator.generate(image) |
|
filtered_masks = sort_and_deduplicate(sam_masks) |
|
|
|
logger.info(f'relate_anything_3_') |
|
feat_list = [] |
|
for fm in filtered_masks: |
|
feat = torch.Tensor(fm['feat']).unsqueeze(0).unsqueeze(0).to(device) |
|
feat_list.append(feat) |
|
feat = torch.cat(feat_list, dim=1).to(device) |
|
matrix_output, rel_triplets = ram_model.predict(feat) |
|
|
|
logger.info(f'relate_anything_4_') |
|
pil_image_list = [] |
|
for i, rel in enumerate(rel_triplets[:k]): |
|
s,o,r = int(rel[0]),int(rel[1]),int(rel[2]) |
|
relation = relation_classes[r] |
|
|
|
mask_image = Image.new('RGBA', pil_image.size, color=(0, 0, 0, 0)) |
|
mask_draw = ImageDraw.Draw(mask_image) |
|
|
|
draw_selected_mask(filtered_masks[s]['segmentation'], mask_draw) |
|
draw_object_mask(filtered_masks[o]['segmentation'], mask_draw) |
|
|
|
current_pil_image = pil_image.copy() |
|
current_pil_image.alpha_composite(mask_image) |
|
|
|
title_image = create_title_image('Red', relation, 'Blue', current_pil_image.size[0]) |
|
concate_pil_image = concatenate_images_vertical(current_pil_image, title_image) |
|
pil_image_list.append(concate_pil_image) |
|
|
|
logger.info(f'relate_anything_5_{len(pil_image_list)}') |
|
return pil_image_list |
|
|
|
mask_source_draw = "draw a mask on input image" |
|
mask_source_segment = "type what to detect below" |
|
|
|
def get_time_cost(run_task_time, time_cost_str): |
|
now_time = int(time.time()*1000) |
|
if run_task_time == 0: |
|
time_cost_str = 'start' |
|
else: |
|
if time_cost_str != '': |
|
time_cost_str += f'-->' |
|
time_cost_str += f'{now_time - run_task_time}' |
|
run_task_time = now_time |
|
return run_task_time, time_cost_str |
|
|
|
def processs_inpainting(inpaint_prompt, input_image, mask_image, image_input_composite, debug=False): |
|
from gradio_client import Client, handle_file |
|
import tempfile |
|
MAX_IMAGE_SIZE = 1024 |
|
|
|
def change_RGB_value(image, r0, g0, b0, r1, g1, b1): |
|
pixels = image.load() |
|
for i in range(image.size[0]): |
|
for j in range(image.size[1]): |
|
r, g, b = pixels[i, j] |
|
if r == r0 and g == g0 and b == b0: |
|
pixels[i, j] = (r1, g1, b1) |
|
return image |
|
|
|
try: |
|
|
|
|
|
|
|
job_image = {} |
|
job_mask_image = None |
|
if 'background' in input_image.keys(): |
|
width, height = input_image['background'].size |
|
if max(width, height) > MAX_IMAGE_SIZE: |
|
if width > height: |
|
resize_width = MAX_IMAGE_SIZE |
|
resize_height = int(height * MAX_IMAGE_SIZE / width) |
|
else: |
|
resize_height = MAX_IMAGE_SIZE |
|
resize_width = int(width * MAX_IMAGE_SIZE / height) |
|
else: |
|
resize_width, resize_height = width, height |
|
|
|
logger.info(f"resize____{width}, {height}==>{resize_width}, {resize_height}") |
|
_, temp_file_path = tempfile.mkstemp(suffix='.png') |
|
img = input_image['background'].convert("RGB").resize((resize_width, resize_height)) |
|
img.save(temp_file_path) |
|
|
|
job_image["background"] = handle_file(temp_file_path) |
|
|
|
if mask_image is not None: |
|
_, temp_file_path = tempfile.mkstemp(suffix='.png') |
|
img = mask_image.convert("RGB").resize((resize_width, resize_height)) |
|
|
|
img = change_RGB_value(img, 0, 0, 0, 230, 230, 230) |
|
|
|
img = change_RGB_value(img, 255, 255, 255, 170, 170, 170) |
|
img.save(temp_file_path) |
|
|
|
job_image["layers"] = [handle_file(temp_file_path)] |
|
|
|
if image_input_composite: |
|
_, temp_file_path = tempfile.mkstemp(suffix='.png') |
|
image_input_composite.save(temp_file_path) |
|
job_image["composite"] = handle_file(temp_file_path) |
|
|
|
logger.info(f'processs_inpainting_job_image={job_image}') |
|
logger.info(f'processs_inpainting_job_mask_image={job_mask_image}') |
|
|
|
if 0==1: |
|
logger.info(f'processs_inpainting_HF = Kwai-Kolors/Kolors-Inpainting') |
|
client = Client("Kwai-Kolors/Kolors-Inpainting", hf_token=huggingface_token, verbose=True) |
|
job = client.submit( |
|
prompt=inpaint_prompt, |
|
image=job_image, |
|
mask_image=job_mask_image, |
|
negative_prompt="broken fingers, deformed fingers, deformed hands, stumps, blurriness, low quality", |
|
seed=0, |
|
randomize_seed=True, |
|
guidance_scale=6.0, |
|
num_inference_steps=25, |
|
api_name="/infer" |
|
) |
|
elif 0==0: |
|
logger.info(f'processs_inpainting_HF = ameerazam08/FLUX.1-dev-Inpainting-Model-Beta-GPU') |
|
client = Client("ameerazam08/FLUX.1-dev-Inpainting-Model-Beta-GPU") |
|
job = client.submit( |
|
input_image_editor=job_image, |
|
|
|
prompt=inpaint_prompt, |
|
negative_prompt="", |
|
controlnet_conditioning_scale=0.9, |
|
guidance_scale=3.5, |
|
seed=124, |
|
num_inference_steps=24, |
|
true_guidance_scale=3.5, |
|
api_name="/process" |
|
) |
|
|
|
if debug: |
|
count = 0 |
|
logger.info(f'{count}___{job.status()}') |
|
while not job.done(): |
|
if debug: |
|
count += 1 |
|
logger.info(f'{count}___{job.status()}') |
|
time.sleep(0.1) |
|
|
|
result = job.outputs() |
|
logger.info(f'processs_inpainting_result={result}') |
|
if len(result) <= 0: |
|
return None |
|
|
|
result = result[0] |
|
im = Image.open(result) |
|
if im.mode == "RGBA": |
|
im.load() |
|
background = Image.new("RGB", im.size, (255, 255, 255)) |
|
background.paste(im, mask=im.split()[3]) |
|
return im |
|
except Exception as e: |
|
logger.info(f'processs_inpainting_[Error]:' + str(e)) |
|
return None |
|
|
|
def run_anything_task(input_image, text_prompt, task_type, inpaint_prompt, box_threshold, text_threshold, |
|
iou_threshold, inpaint_mode, mask_source_radio, remove_mode, remove_mask_extend, remove_use_segment, num_relation, kosmos_input, cleaner_size_limit=1080): |
|
text_prompt = getTextTrans(text_prompt, source='zh', target='en') |
|
inpaint_prompt = getTextTrans(inpaint_prompt, source='zh', target='en') |
|
|
|
run_task_time = 0 |
|
time_cost_str = '' |
|
run_task_time, time_cost_str = get_time_cost(run_task_time, time_cost_str) |
|
|
|
|
|
ori_input_image = input_image |
|
image_input_composite = None |
|
if 'background' in input_image.keys(): |
|
input_image['image'] = input_image['background'].convert("RGB") |
|
if len(input_image['layers']) > 0: |
|
img_arr = np.array(input_image['layers'][0].convert("L")) |
|
img_arr = np.where(img_arr > 0, 1, img_arr) |
|
input_image['mask'] = Image.fromarray(255*img_arr.astype('uint8')) |
|
if 'composite' in input_image.keys(): |
|
image_input_composite = input_image['composite'] |
|
|
|
if (task_type == 'Kosmos-2'): |
|
global kosmos_model, kosmos_processor |
|
if isinstance(input_image, dict): |
|
image_pil, image = load_image(input_image['image'].convert("RGB")) |
|
input_img = input_image['image'] |
|
else: |
|
image_pil, image = load_image(input_image.convert("RGB")) |
|
input_img = input_image |
|
|
|
kosmos_image, kosmos_text, kosmos_entities = kosmos_generate_predictions(image_pil, kosmos_input, kosmos_model, kosmos_processor) |
|
run_task_time, time_cost_str = get_time_cost(run_task_time, time_cost_str) |
|
return None, None, time_cost_str, kosmos_image, gr.update(visible=(time_cost_str !='')), kosmos_text, kosmos_entities |
|
|
|
if (task_type == 'relate anything'): |
|
output_images = relate_anything(input_image['image'], num_relation) |
|
run_task_time, time_cost_str = get_time_cost(run_task_time, time_cost_str) |
|
return output_images, gr.update(label='relate images'), time_cost_str, gr.update(visible=(time_cost_str !='')), None, None, None |
|
|
|
text_prompt = text_prompt.strip() |
|
if not ((task_type in ['inpainting', 'outpainting'] or task_type == 'remove') and mask_source_radio == mask_source_draw): |
|
if text_prompt == '': |
|
return [], gr.update(label='Detection prompt is not found!😂😂😂😂'), time_cost_str, gr.update(visible=(time_cost_str !='')), None, None, None |
|
|
|
if input_image is None: |
|
return [], gr.update(label='Please upload a image!😂😂😂😂'), time_cost_str, gr.update(visible=(time_cost_str !='')), None, None, None |
|
|
|
file_temp = int(time.time()) |
|
logger.info(f'run_anything_task_002/{device}_[{file_temp}]_{task_type}/{inpaint_mode}/[{mask_source_radio}]/{remove_mode}/{remove_mask_extend}/{remove_use_segment}_[{text_prompt}]/[{inpaint_prompt}]___1_') |
|
|
|
output_images = [] |
|
|
|
|
|
if mask_source_radio == mask_source_draw: |
|
input_mask_pil = input_image['mask'] |
|
input_mask = np.array(input_mask_pil.convert("L")) |
|
|
|
if isinstance(input_image, dict): |
|
image_pil, image = load_image(input_image['image'].convert("RGB")) |
|
input_img = input_image['image'] |
|
output_images.append(input_image['image']) |
|
run_task_time, time_cost_str = get_time_cost(run_task_time, time_cost_str) |
|
else: |
|
image_pil, image = load_image(input_image.convert("RGB")) |
|
input_img = input_image |
|
output_images.append(input_image) |
|
run_task_time, time_cost_str = get_time_cost(run_task_time, time_cost_str) |
|
|
|
size = image_pil.size |
|
H, W = size[1], size[0] |
|
|
|
|
|
if (task_type in ['inpainting', 'outpainting'] or task_type == 'remove') and mask_source_radio == mask_source_draw: |
|
pass |
|
else: |
|
groundingdino_device = 'cpu' |
|
if device != 'cpu': |
|
try: |
|
from groundingdino import _C |
|
groundingdino_device = 'cuda:0' |
|
except: |
|
warnings.warn("Failed to load custom C++ ops. Running on CPU mode Only in groundingdino!") |
|
|
|
boxes_filt, pred_phrases = get_grounding_output( |
|
groundingdino_model, image, text_prompt, box_threshold, text_threshold, device=groundingdino_device |
|
) |
|
if boxes_filt.size(0) == 0: |
|
logger.info(f'run_anything_task_[{file_temp}]_{task_type}_[{text_prompt}]_1___{groundingdino_device}/[No objects detected, please try others.]_') |
|
return [], gr.update(label='No objects detected, please try others.😂😂😂😂'), time_cost_str, gr.update(visible=(time_cost_str !='')), None, None, None |
|
boxes_filt_ori = copy.deepcopy(boxes_filt) |
|
|
|
pred_dict = { |
|
"boxes": boxes_filt, |
|
"size": [size[1], size[0]], |
|
"labels": pred_phrases, |
|
} |
|
|
|
image_with_box = plot_boxes_to_image(copy.deepcopy(image_pil), pred_dict)[0] |
|
output_images.append(image_with_box) |
|
run_task_time, time_cost_str = get_time_cost(run_task_time, time_cost_str) |
|
|
|
logger.info(f'run_anything_task_[{file_temp}]_{task_type}_2_') |
|
|
|
use_sam_predictor = True |
|
if task_type == 'segment' or ((task_type in ['inpainting', 'outpainting'] or task_type == 'remove') and mask_source_radio == mask_source_segment): |
|
image = np.array(input_img) |
|
logger.info(f'run_anything_task_[{file_temp}]_{task_type}_2_1_') |
|
if task_type == 'remove' and remove_use_segment == False: |
|
logger.info(f'run_anything_task_[{file_temp}]_{task_type}_2_2_') |
|
use_sam_predictor = False |
|
|
|
if sam_predictor and use_sam_predictor: |
|
logger.info(f'run_anything_task_[{file_temp}]_{task_type}_2_3_') |
|
sam_predictor.set_image(image) |
|
|
|
for i in range(boxes_filt.size(0)): |
|
boxes_filt[i] = boxes_filt[i] * torch.Tensor([W, H, W, H]) |
|
boxes_filt[i][:2] -= boxes_filt[i][2:] / 2 |
|
boxes_filt[i][2:] += boxes_filt[i][:2] |
|
|
|
if sam_predictor and use_sam_predictor: |
|
logger.info(f'run_anything_task_[{file_temp}]_{task_type}_2_4_') |
|
boxes_filt = boxes_filt.to(sam_device) |
|
transformed_boxes = sam_predictor.transform.apply_boxes_torch(boxes_filt, image.shape[:2]) |
|
|
|
masks, _, _, _ = sam_predictor.predict_torch( |
|
point_coords = None, |
|
point_labels = None, |
|
boxes = transformed_boxes, |
|
multimask_output = False, |
|
) |
|
|
|
assert sam_checkpoint, 'sam_checkpoint is not found!' |
|
else: |
|
logger.info(f'run_anything_task_[{file_temp}]_{task_type}_2_5_') |
|
masks = torch.zeros(len(boxes_filt), 1, H, W) |
|
mask_count = 0 |
|
for box in boxes_filt: |
|
masks[mask_count, 0, int(box[1]):int(box[3]), int(box[0]):int(box[2])] = 1 |
|
mask_count += 1 |
|
masks = torch.where(masks > 0, True, False) |
|
run_mode = "rectangle" |
|
|
|
logger.info(f'run_anything_task_[{file_temp}]_{task_type}_2_6_') |
|
|
|
plt.figure(figsize=(10, 10)) |
|
plt.imshow(image) |
|
for mask in masks: |
|
show_mask(mask.cpu().numpy(), plt.gca(), random_color=True) |
|
for box, label in zip(boxes_filt, pred_phrases): |
|
show_box(box.cpu().numpy(), plt.gca(), label) |
|
plt.axis('off') |
|
image_path = os.path.join(output_dir, f"grounding_seg_output_{file_temp}.jpg") |
|
plt.savefig(image_path, bbox_inches="tight") |
|
plt.clf() |
|
plt.close('all') |
|
segment_image_result = cv2.cvtColor(cv2.imread(image_path), cv2.COLOR_BGR2RGB) |
|
os.remove(image_path) |
|
output_images.append(Image.fromarray(segment_image_result)) |
|
run_task_time, time_cost_str = get_time_cost(run_task_time, time_cost_str) |
|
|
|
logger.info(f'run_anything_task_[{file_temp}]_{task_type}_3_') |
|
if task_type == 'detection' or task_type == 'segment': |
|
logger.info(f'run_anything_task_[{file_temp}]_{task_type}_9_') |
|
return output_images, gr.update(label='result images'), time_cost_str, gr.update(visible=(time_cost_str !='')), None, None, None |
|
elif task_type in ['inpainting', 'outpainting'] or task_type == 'remove': |
|
if inpaint_prompt.strip() == '' and mask_source_radio == mask_source_segment: |
|
task_type = 'remove' |
|
|
|
logger.info(f'run_anything_task_[{file_temp}]_{task_type}_4_') |
|
if mask_source_radio == mask_source_draw: |
|
mask_pil = input_mask_pil |
|
mask = input_mask |
|
else: |
|
masks_ori = copy.deepcopy(masks) |
|
if inpaint_mode == 'merge': |
|
masks = torch.sum(masks, dim=0).unsqueeze(0) |
|
masks = torch.where(masks > 0, True, False) |
|
mask = masks[0][0].cpu().numpy() |
|
mask_pil = Image.fromarray(mask) |
|
output_images.append(mask_pil.convert("RGB")) |
|
run_task_time, time_cost_str = get_time_cost(run_task_time, time_cost_str) |
|
|
|
if task_type in ['inpainting', 'outpainting']: |
|
|
|
image_source_for_inpaint = image_pil |
|
image_mask_for_inpaint = mask_pil |
|
if task_type in ['outpainting']: |
|
|
|
img_arr = np.array(image_mask_for_inpaint) |
|
img_arr = np.where(img_arr > 0, 1, img_arr) |
|
img_arr = 1 - img_arr |
|
image_mask_for_inpaint = Image.fromarray(255*img_arr.astype('uint8')) |
|
output_images.append(image_mask_for_inpaint.convert("RGB")) |
|
run_task_time, time_cost_str = get_time_cost(run_task_time, time_cost_str) |
|
|
|
|
|
image_inpainting = processs_inpainting(inpaint_prompt, input_image, image_mask_for_inpaint, image_input_composite) |
|
if image_inpainting is None: |
|
logger.info(f'processs_inpainting_failed_') |
|
time_cost_str = f"processs_inpainting_task__failed!" |
|
return None, None, time_cost_str, gr.update(visible=(time_cost_str !='')), None, None, None |
|
else: |
|
|
|
if mask_source_radio == mask_source_segment: |
|
mask_imgs = [] |
|
masks_shape = masks_ori.shape |
|
boxes_filt_ori_array = boxes_filt_ori.numpy() |
|
if inpaint_mode == 'merge': |
|
extend_shape_0 = masks_shape[0] |
|
extend_shape_1 = masks_shape[1] |
|
else: |
|
extend_shape_0 = 1 |
|
extend_shape_1 = 1 |
|
for i in range(extend_shape_0): |
|
for j in range(extend_shape_1): |
|
mask = masks_ori[i][j].cpu().numpy() |
|
mask_pil = Image.fromarray(mask) |
|
if remove_mode == 'segment': |
|
useRectangle = False |
|
else: |
|
useRectangle = True |
|
try: |
|
remove_mask_extend = int(remove_mask_extend) |
|
except: |
|
remove_mask_extend = 10 |
|
mask_pil_exp = mask_extend(copy.deepcopy(mask_pil).convert("RGB"), |
|
xywh_to_xyxy(torch.tensor(boxes_filt_ori_array[i]), W, H), |
|
extend_pixels=remove_mask_extend, useRectangle=useRectangle) |
|
mask_imgs.append(mask_pil_exp) |
|
mask_pil = mix_masks(mask_imgs) |
|
output_images.append(mask_pil.convert("RGB")) |
|
run_task_time, time_cost_str = get_time_cost(run_task_time, time_cost_str) |
|
|
|
logger.info(f'run_anything_task_[{file_temp}]_{task_type}_6_') |
|
image_inpainting = lama_cleaner_process(np.array(image_pil), np.array(mask_pil.convert("L")), cleaner_size_limit) |
|
if image_inpainting is None: |
|
logger.info(f'run_anything_task_failed_') |
|
time_cost_str = f"run_anything_task[{task_type}]__failed!" |
|
return None, None, time_cost_str, gr.update(visible=(time_cost_str !='')), None, None, None |
|
|
|
|
|
|
|
|
|
logger.info(f'run_anything_task_[{file_temp}]_{task_type}_7_') |
|
image_inpainting = image_inpainting.resize((image_pil.size[0], image_pil.size[1])) |
|
output_images.append(image_inpainting) |
|
run_task_time, time_cost_str = get_time_cost(run_task_time, time_cost_str) |
|
logger.info(f'run_anything_task_[{file_temp}]_{task_type}_9_') |
|
return output_images, gr.update(label='result images'), time_cost_str, gr.update(visible=(time_cost_str !='')), None, None, None |
|
else: |
|
logger.info(f"task_type:{task_type} error!") |
|
logger.info(f'run_anything_task_[{file_temp}]_9_9_') |
|
return output_images, gr.update(label='result images'), time_cost_str, gr.update(visible=(time_cost_str !='')), None, None, None |
|
|
|
def change_radio_display(task_type, mask_source_radio): |
|
text_prompt_visible = True |
|
inpaint_prompt_visible = False |
|
mask_source_radio_visible = False |
|
num_relation_visible = False |
|
|
|
image_gallery_visible = True |
|
kosmos_input_visible = False |
|
kosmos_output_visible = False |
|
kosmos_text_output_visible = False |
|
|
|
if task_type == "Kosmos-2": |
|
if kosmos_enable: |
|
text_prompt_visible = False |
|
image_gallery_visible = False |
|
kosmos_input_visible = True |
|
kosmos_output_visible = True |
|
kosmos_text_output_visible = True |
|
|
|
if task_type in ['inpainting', 'outpainting']: |
|
inpaint_prompt_visible = True |
|
if task_type in ['inpainting', 'outpainting'] or task_type == "remove": |
|
mask_source_radio_visible = True |
|
if mask_source_radio == mask_source_draw: |
|
text_prompt_visible = False |
|
if task_type == "relate anything": |
|
text_prompt_visible = False |
|
num_relation_visible = True |
|
|
|
return (gr.update(visible=text_prompt_visible), |
|
gr.update(visible=inpaint_prompt_visible), |
|
gr.update(visible=mask_source_radio_visible), |
|
gr.update(visible=num_relation_visible), |
|
gr.update(visible=image_gallery_visible), |
|
gr.update(visible=kosmos_input_visible), |
|
gr.update(visible=kosmos_output_visible), |
|
gr.update(visible=kosmos_text_output_visible)) |
|
|
|
def get_model_device(module): |
|
try: |
|
if module is None: |
|
return 'None' |
|
if isinstance(module, torch.nn.DataParallel): |
|
module = module.module |
|
for submodule in module.children(): |
|
if hasattr(submodule, "_parameters"): |
|
parameters = submodule._parameters |
|
if "weight" in parameters: |
|
return parameters["weight"].device |
|
return 'UnKnown' |
|
except Exception as e: |
|
return 'Error' |
|
|
|
def main_gradio(args): |
|
block = gr.Blocks( |
|
title="SAM and others", |
|
|
|
) |
|
with block: |
|
with gr.Row(): |
|
with gr.Column(): |
|
task_types = ["detection"] |
|
if sam_enable: |
|
task_types.append("segment") |
|
if inpainting_enable: |
|
task_types.append("inpainting") |
|
|
|
if lama_cleaner_enable: |
|
task_types.append("remove") |
|
if ram_enable: |
|
task_types.append("relate anything") |
|
if kosmos_enable: |
|
task_types.append("Kosmos-2") |
|
|
|
brush_color = "#00FF00" |
|
color_mode = "fixed" |
|
input_image = gr.ImageEditor(sources=["upload", "webcam"], |
|
image_mode='RGB', |
|
elem_id="image_upload", |
|
type='pil', |
|
label="Upload", |
|
layers=False, |
|
brush=gr.Brush(colors=[brush_color], color_mode=color_mode)) |
|
|
|
task_type = gr.Radio(task_types, value="detection", |
|
label='Task type', visible=True) |
|
mask_source_radio = gr.Radio([mask_source_draw, mask_source_segment], |
|
value=mask_source_segment, label="Mask from", |
|
visible=False) |
|
text_prompt = gr.Textbox(label="Detection Prompt[To detect multiple objects, seperating each with '.', like this: cat . dog . chair ]", placeholder="Cannot be empty") |
|
inpaint_prompt = gr.Textbox(label="Inpaint Prompt (if this is empty, then remove)", visible=False) |
|
num_relation = gr.Slider(label="How many relations do you want to see", minimum=1, maximum=20, value=5, step=1, visible=False) |
|
|
|
kosmos_input = gr.Radio(["Brief", "Detailed"], label="Kosmos Description Type", value="Brief", visible=False) |
|
|
|
run_button = gr.Button(value="Run", visible=True) |
|
with gr.Accordion("Advanced options", open=False) as advanced_options: |
|
box_threshold = gr.Slider( |
|
label="Box Threshold", minimum=0.0, maximum=1.0, value=0.3, step=0.001 |
|
) |
|
text_threshold = gr.Slider( |
|
label="Text Threshold", minimum=0.0, maximum=1.0, value=0.25, step=0.001 |
|
) |
|
iou_threshold = gr.Slider( |
|
label="IOU Threshold", minimum=0.0, maximum=1.0, value=0.8, step=0.001 |
|
) |
|
inpaint_mode = gr.Radio(["merge", "first"], value="merge", label="inpaint_mode") |
|
with gr.Row(): |
|
with gr.Column(scale=1): |
|
remove_mode = gr.Radio(["segment", "rectangle"], value="segment", label='remove mode') |
|
with gr.Column(scale=1): |
|
remove_mask_extend = gr.Textbox(label="remove_mask_extend", value='10') |
|
with gr.Column(scale=1, visible=False): |
|
remove_use_segment = gr.Checkbox(value=True, elem_id='remove_use_segment', label="use segment for removing?", info="") |
|
with gr.Column(): |
|
image_gallery = gr.Gallery(label="result images", show_label=True, elem_id="gallery", height=512, visible=True |
|
) |
|
time_cost = gr.Textbox(label="Time cost by step (ms):", visible=False, interactive=False) |
|
|
|
kosmos_output = gr.Image(type="pil", label="result images", visible=False) |
|
kosmos_text_output = gr.HighlightedText( |
|
label="Generated Description", |
|
combine_adjacent=False, |
|
show_legend=True, |
|
visible=False, |
|
) |
|
|
|
selected = gr.Number(-1, show_label=False, visible=False) |
|
|
|
|
|
entity_output = gr.Textbox(visible=False) |
|
|
|
|
|
def get_text_span_label(evt: gr.SelectData): |
|
if evt.value[-1] is None: |
|
return -1 |
|
return int(evt.value[-1]) |
|
|
|
kosmos_text_output.select(get_text_span_label, None, selected) |
|
|
|
|
|
def update_output_image(img_input, image_output, entities, idx): |
|
entities = ast.literal_eval(entities) |
|
updated_image = draw_entity_boxes_on_image(img_input, entities, entity_index=idx) |
|
return updated_image |
|
selected.change(update_output_image, [kosmos_output, kosmos_output, entity_output, selected], [kosmos_output]) |
|
|
|
run_button.click(fn=run_anything_task, inputs=[ |
|
input_image, text_prompt, task_type, inpaint_prompt, box_threshold, text_threshold, |
|
iou_threshold, inpaint_mode, mask_source_radio, remove_mode, remove_mask_extend, remove_use_segment, num_relation, kosmos_input], |
|
outputs=[image_gallery, image_gallery, time_cost, time_cost, kosmos_output, kosmos_text_output, entity_output], show_progress=True, queue=True) |
|
|
|
mask_source_radio.change(fn=change_radio_display, inputs=[task_type, mask_source_radio], |
|
outputs=[text_prompt, inpaint_prompt, mask_source_radio, num_relation]) |
|
task_type.change(fn=change_radio_display, inputs=[task_type, mask_source_radio], |
|
outputs=[text_prompt, inpaint_prompt, mask_source_radio, num_relation, |
|
image_gallery, kosmos_input, kosmos_output, kosmos_text_output |
|
]) |
|
|
|
DESCRIPTION = f'### This demo from [Grounded-Segment-Anything](https://github.com/IDEA-Research/Grounded-Segment-Anything). <br>' |
|
if lama_cleaner_enable: |
|
DESCRIPTION += f'Remove(cleaner) from [lama-cleaner](https://github.com/Sanster/lama-cleaner). <br>' |
|
if kosmos_enable: |
|
DESCRIPTION += f'Kosmos-2 from [Kosmos-2](https://github.com/microsoft/unilm/tree/master/kosmos-2). <br>' |
|
if ram_enable: |
|
DESCRIPTION += f'RAM from [RelateAnything](https://github.com/Luodian/RelateAnything). <br>' |
|
if inpainting_enable: |
|
DESCRIPTION += f'Inpainting from [FLUX.1-dev-Inpainting-Model-Beta-GPU](https://huggingface.co/spaces/ameerazam08/FLUX.1-dev-Inpainting-Model-Beta-GPU). <br>' |
|
|
|
DESCRIPTION += f'Thanks for their excellent work.' |
|
DESCRIPTION += f'<p>For faster inference without waiting in queue, you may duplicate the space and upgrade to GPU in settings. \ |
|
<a href="https://huggingface.co/spaces/yizhangliu/Grounded-Segment-Anything?duplicate=true"><img style="display: inline; margin-top: 0em; margin-bottom: 0em" src="https://bit.ly/3gLdBN6" alt="Duplicate Space" /></a></p>' |
|
gr.Markdown(DESCRIPTION) |
|
|
|
logger.info(f'device = {device}') |
|
logger.info(f'torch.cuda.is_available = {torch.cuda.is_available()}') |
|
computer_info() |
|
block.queue(max_size=10, api_open=False) |
|
logger.info(f"Start a gradio server[{os.getpid()}]: http://0.0.0.0:{args.port}") |
|
block.launch(server_name='0.0.0.0', server_port=args.port, debug=args.debug, share=args.share, show_api=False) |
|
|
|
if __name__ == "__main__": |
|
parser = argparse.ArgumentParser("Grounded SAM demo", add_help=True) |
|
parser.add_argument("--debug", action="store_true", help="using debug mode") |
|
parser.add_argument("--share", action="store_true", help="share the app") |
|
parser.add_argument("--port", "-p", type=int, default=7860, help="port") |
|
parser.add_argument("--cuda", "-c", type=str, default='cuda:0', help="cuda") |
|
args, _ = parser.parse_known_args() |
|
logger.info(f'args = {args}') |
|
|
|
if os.environ.get('IS_MY_DEBUG') is None: |
|
os.system("pip list") |
|
|
|
set_device(args) |
|
if device == 'cpu': |
|
kosmos_enable = False |
|
|
|
if kosmos_enable: |
|
kosmos_model, kosmos_processor = load_kosmos_model(device) |
|
|
|
if groundingdino_enable: |
|
load_groundingdino_model('cpu') |
|
|
|
if sam_enable: |
|
load_sam_model(device) |
|
|
|
if inpainting_enable: |
|
load_sd_model(device) |
|
|
|
if lama_cleaner_enable: |
|
load_lama_cleaner_model(device) |
|
|
|
if ram_enable: |
|
load_ram_model(device) |
|
|
|
if os.environ.get('IS_MY_DEBUG') is None: |
|
os.system("pip list") |
|
|
|
main_gradio(args) |
|
|
|
|
|
|