Spaces:
Starting
on
T4
Starting
on
T4
# coding=utf-8 | |
# Copyright 2020 Hugging Face | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import re | |
import time | |
from typing import Optional | |
import IPython.display as disp | |
from ..trainer_callback import TrainerCallback | |
from ..trainer_utils import IntervalStrategy, has_length | |
def format_time(t): | |
"Format `t` (in seconds) to (h):mm:ss" | |
t = int(t) | |
h, m, s = t // 3600, (t // 60) % 60, t % 60 | |
return f"{h}:{m:02d}:{s:02d}" if h != 0 else f"{m:02d}:{s:02d}" | |
def html_progress_bar(value, total, prefix, label, width=300): | |
# docstyle-ignore | |
return f""" | |
<div> | |
{prefix} | |
<progress value='{value}' max='{total}' style='width:{width}px; height:20px; vertical-align: middle;'></progress> | |
{label} | |
</div> | |
""" | |
def text_to_html_table(items): | |
"Put the texts in `items` in an HTML table." | |
html_code = """<table border="1" class="dataframe">\n""" | |
html_code += """ <thead>\n <tr style="text-align: left;">\n""" | |
for i in items[0]: | |
html_code += f" <th>{i}</th>\n" | |
html_code += " </tr>\n </thead>\n <tbody>\n" | |
for line in items[1:]: | |
html_code += " <tr>\n" | |
for elt in line: | |
elt = f"{elt:.6f}" if isinstance(elt, float) else str(elt) | |
html_code += f" <td>{elt}</td>\n" | |
html_code += " </tr>\n" | |
html_code += " </tbody>\n</table><p>" | |
return html_code | |
class NotebookProgressBar: | |
""" | |
A progress par for display in a notebook. | |
Class attributes (overridden by derived classes) | |
- **warmup** (`int`) -- The number of iterations to do at the beginning while ignoring `update_every`. | |
- **update_every** (`float`) -- Since calling the time takes some time, we only do it every presumed | |
`update_every` seconds. The progress bar uses the average time passed up until now to guess the next value | |
for which it will call the update. | |
Args: | |
total (`int`): | |
The total number of iterations to reach. | |
prefix (`str`, *optional*): | |
A prefix to add before the progress bar. | |
leave (`bool`, *optional*, defaults to `True`): | |
Whether or not to leave the progress bar once it's completed. You can always call the | |
[`~utils.notebook.NotebookProgressBar.close`] method to make the bar disappear. | |
parent ([`~notebook.NotebookTrainingTracker`], *optional*): | |
A parent object (like [`~utils.notebook.NotebookTrainingTracker`]) that spawns progress bars and handle | |
their display. If set, the object passed must have a `display()` method. | |
width (`int`, *optional*, defaults to 300): | |
The width (in pixels) that the bar will take. | |
Example: | |
```python | |
import time | |
pbar = NotebookProgressBar(100) | |
for val in range(100): | |
pbar.update(val) | |
time.sleep(0.07) | |
pbar.update(100) | |
```""" | |
warmup = 5 | |
update_every = 0.2 | |
def __init__( | |
self, | |
total: int, | |
prefix: Optional[str] = None, | |
leave: bool = True, | |
parent: Optional["NotebookTrainingTracker"] = None, | |
width: int = 300, | |
): | |
self.total = total | |
self.prefix = "" if prefix is None else prefix | |
self.leave = leave | |
self.parent = parent | |
self.width = width | |
self.last_value = None | |
self.comment = None | |
self.output = None | |
def update(self, value: int, force_update: bool = False, comment: str = None): | |
""" | |
The main method to update the progress bar to `value`. | |
Args: | |
value (`int`): | |
The value to use. Must be between 0 and `total`. | |
force_update (`bool`, *optional*, defaults to `False`): | |
Whether or not to force and update of the internal state and display (by default, the bar will wait for | |
`value` to reach the value it predicted corresponds to a time of more than the `update_every` attribute | |
since the last update to avoid adding boilerplate). | |
comment (`str`, *optional*): | |
A comment to add on the left of the progress bar. | |
""" | |
self.value = value | |
if comment is not None: | |
self.comment = comment | |
if self.last_value is None: | |
self.start_time = self.last_time = time.time() | |
self.start_value = self.last_value = value | |
self.elapsed_time = self.predicted_remaining = None | |
self.first_calls = self.warmup | |
self.wait_for = 1 | |
self.update_bar(value) | |
elif value <= self.last_value and not force_update: | |
return | |
elif force_update or self.first_calls > 0 or value >= min(self.last_value + self.wait_for, self.total): | |
if self.first_calls > 0: | |
self.first_calls -= 1 | |
current_time = time.time() | |
self.elapsed_time = current_time - self.start_time | |
# We could have value = self.start_value if the update is called twixe with the same start value. | |
if value > self.start_value: | |
self.average_time_per_item = self.elapsed_time / (value - self.start_value) | |
else: | |
self.average_time_per_item = None | |
if value >= self.total: | |
value = self.total | |
self.predicted_remaining = None | |
if not self.leave: | |
self.close() | |
elif self.average_time_per_item is not None: | |
self.predicted_remaining = self.average_time_per_item * (self.total - value) | |
self.update_bar(value) | |
self.last_value = value | |
self.last_time = current_time | |
if self.average_time_per_item is None: | |
self.wait_for = 1 | |
else: | |
self.wait_for = max(int(self.update_every / self.average_time_per_item), 1) | |
def update_bar(self, value, comment=None): | |
spaced_value = " " * (len(str(self.total)) - len(str(value))) + str(value) | |
if self.elapsed_time is None: | |
self.label = f"[{spaced_value}/{self.total} : < :" | |
elif self.predicted_remaining is None: | |
self.label = f"[{spaced_value}/{self.total} {format_time(self.elapsed_time)}" | |
else: | |
self.label = ( | |
f"[{spaced_value}/{self.total} {format_time(self.elapsed_time)} <" | |
f" {format_time(self.predicted_remaining)}" | |
) | |
self.label += f", {1/self.average_time_per_item:.2f} it/s" | |
self.label += "]" if self.comment is None or len(self.comment) == 0 else f", {self.comment}]" | |
self.display() | |
def display(self): | |
self.html_code = html_progress_bar(self.value, self.total, self.prefix, self.label, self.width) | |
if self.parent is not None: | |
# If this is a child bar, the parent will take care of the display. | |
self.parent.display() | |
return | |
if self.output is None: | |
self.output = disp.display(disp.HTML(self.html_code), display_id=True) | |
else: | |
self.output.update(disp.HTML(self.html_code)) | |
def close(self): | |
"Closes the progress bar." | |
if self.parent is None and self.output is not None: | |
self.output.update(disp.HTML("")) | |
class NotebookTrainingTracker(NotebookProgressBar): | |
""" | |
An object tracking the updates of an ongoing training with progress bars and a nice table reporting metrics. | |
Args: | |
num_steps (`int`): The number of steps during training. column_names (`List[str]`, *optional*): | |
The list of column names for the metrics table (will be inferred from the first call to | |
[`~utils.notebook.NotebookTrainingTracker.write_line`] if not set). | |
""" | |
def __init__(self, num_steps, column_names=None): | |
super().__init__(num_steps) | |
self.inner_table = None if column_names is None else [column_names] | |
self.child_bar = None | |
def display(self): | |
self.html_code = html_progress_bar(self.value, self.total, self.prefix, self.label, self.width) | |
if self.inner_table is not None: | |
self.html_code += text_to_html_table(self.inner_table) | |
if self.child_bar is not None: | |
self.html_code += self.child_bar.html_code | |
if self.output is None: | |
self.output = disp.display(disp.HTML(self.html_code), display_id=True) | |
else: | |
self.output.update(disp.HTML(self.html_code)) | |
def write_line(self, values): | |
""" | |
Write the values in the inner table. | |
Args: | |
values (`Dict[str, float]`): The values to display. | |
""" | |
if self.inner_table is None: | |
self.inner_table = [list(values.keys()), list(values.values())] | |
else: | |
columns = self.inner_table[0] | |
for key in values.keys(): | |
if key not in columns: | |
columns.append(key) | |
self.inner_table[0] = columns | |
if len(self.inner_table) > 1: | |
last_values = self.inner_table[-1] | |
first_column = self.inner_table[0][0] | |
if last_values[0] != values[first_column]: | |
# write new line | |
self.inner_table.append([values[c] if c in values else "No Log" for c in columns]) | |
else: | |
# update last line | |
new_values = values | |
for c in columns: | |
if c not in new_values.keys(): | |
new_values[c] = last_values[columns.index(c)] | |
self.inner_table[-1] = [new_values[c] for c in columns] | |
else: | |
self.inner_table.append([values[c] for c in columns]) | |
def add_child(self, total, prefix=None, width=300): | |
""" | |
Add a child progress bar displayed under the table of metrics. The child progress bar is returned (so it can be | |
easily updated). | |
Args: | |
total (`int`): The number of iterations for the child progress bar. | |
prefix (`str`, *optional*): A prefix to write on the left of the progress bar. | |
width (`int`, *optional*, defaults to 300): The width (in pixels) of the progress bar. | |
""" | |
self.child_bar = NotebookProgressBar(total, prefix=prefix, parent=self, width=width) | |
return self.child_bar | |
def remove_child(self): | |
""" | |
Closes the child progress bar. | |
""" | |
self.child_bar = None | |
self.display() | |
class NotebookProgressCallback(TrainerCallback): | |
""" | |
A [`TrainerCallback`] that displays the progress of training or evaluation, optimized for Jupyter Notebooks or | |
Google colab. | |
""" | |
def __init__(self): | |
self.training_tracker = None | |
self.prediction_bar = None | |
self._force_next_update = False | |
def on_train_begin(self, args, state, control, **kwargs): | |
self.first_column = "Epoch" if args.evaluation_strategy == IntervalStrategy.EPOCH else "Step" | |
self.training_loss = 0 | |
self.last_log = 0 | |
column_names = [self.first_column] + ["Training Loss"] | |
if args.evaluation_strategy != IntervalStrategy.NO: | |
column_names.append("Validation Loss") | |
self.training_tracker = NotebookTrainingTracker(state.max_steps, column_names) | |
def on_step_end(self, args, state, control, **kwargs): | |
epoch = int(state.epoch) if int(state.epoch) == state.epoch else f"{state.epoch:.2f}" | |
self.training_tracker.update( | |
state.global_step + 1, | |
comment=f"Epoch {epoch}/{state.num_train_epochs}", | |
force_update=self._force_next_update, | |
) | |
self._force_next_update = False | |
def on_prediction_step(self, args, state, control, eval_dataloader=None, **kwargs): | |
if not has_length(eval_dataloader): | |
return | |
if self.prediction_bar is None: | |
if self.training_tracker is not None: | |
self.prediction_bar = self.training_tracker.add_child(len(eval_dataloader)) | |
else: | |
self.prediction_bar = NotebookProgressBar(len(eval_dataloader)) | |
self.prediction_bar.update(1) | |
else: | |
self.prediction_bar.update(self.prediction_bar.value + 1) | |
def on_predict(self, args, state, control, **kwargs): | |
if self.prediction_bar is not None: | |
self.prediction_bar.close() | |
self.prediction_bar = None | |
def on_log(self, args, state, control, logs=None, **kwargs): | |
# Only for when there is no evaluation | |
if args.evaluation_strategy == IntervalStrategy.NO and "loss" in logs: | |
values = {"Training Loss": logs["loss"]} | |
# First column is necessarily Step sine we're not in epoch eval strategy | |
values["Step"] = state.global_step | |
self.training_tracker.write_line(values) | |
def on_evaluate(self, args, state, control, metrics=None, **kwargs): | |
if self.training_tracker is not None: | |
values = {"Training Loss": "No log", "Validation Loss": "No log"} | |
for log in reversed(state.log_history): | |
if "loss" in log: | |
values["Training Loss"] = log["loss"] | |
break | |
if self.first_column == "Epoch": | |
values["Epoch"] = int(state.epoch) | |
else: | |
values["Step"] = state.global_step | |
metric_key_prefix = "eval" | |
for k in metrics: | |
if k.endswith("_loss"): | |
metric_key_prefix = re.sub(r"\_loss$", "", k) | |
_ = metrics.pop("total_flos", None) | |
_ = metrics.pop("epoch", None) | |
_ = metrics.pop(f"{metric_key_prefix}_runtime", None) | |
_ = metrics.pop(f"{metric_key_prefix}_samples_per_second", None) | |
_ = metrics.pop(f"{metric_key_prefix}_steps_per_second", None) | |
_ = metrics.pop(f"{metric_key_prefix}_jit_compilation_time", None) | |
for k, v in metrics.items(): | |
splits = k.split("_") | |
name = " ".join([part.capitalize() for part in splits[1:]]) | |
if name == "Loss": | |
# Single dataset | |
name = "Validation Loss" | |
values[name] = v | |
self.training_tracker.write_line(values) | |
self.training_tracker.remove_child() | |
self.prediction_bar = None | |
# Evaluation takes a long time so we should force the next update. | |
self._force_next_update = True | |
def on_train_end(self, args, state, control, **kwargs): | |
self.training_tracker.update( | |
state.global_step, comment=f"Epoch {int(state.epoch)}/{state.num_train_epochs}", force_update=True | |
) | |
self.training_tracker = None | |