Spaces:
Starting
on
T4
Starting
on
T4
# coding=utf-8 | |
# Copyright 2021 The HuggingFace Inc. team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
""" PyTorch ConvBERT model.""" | |
import math | |
import os | |
from operator import attrgetter | |
from typing import Optional, Tuple, Union | |
import torch | |
import torch.utils.checkpoint | |
from torch import nn | |
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss | |
from ...activations import ACT2FN, get_activation | |
from ...modeling_outputs import ( | |
BaseModelOutputWithCrossAttentions, | |
MaskedLMOutput, | |
MultipleChoiceModelOutput, | |
QuestionAnsweringModelOutput, | |
SequenceClassifierOutput, | |
TokenClassifierOutput, | |
) | |
from ...modeling_utils import PreTrainedModel, SequenceSummary | |
from ...pytorch_utils import apply_chunking_to_forward, find_pruneable_heads_and_indices, prune_linear_layer | |
from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging | |
from .configuration_convbert import ConvBertConfig | |
logger = logging.get_logger(__name__) | |
_CHECKPOINT_FOR_DOC = "YituTech/conv-bert-base" | |
_CONFIG_FOR_DOC = "ConvBertConfig" | |
CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST = [ | |
"YituTech/conv-bert-base", | |
"YituTech/conv-bert-medium-small", | |
"YituTech/conv-bert-small", | |
# See all ConvBERT models at https://huggingface.co/models?filter=convbert | |
] | |
def load_tf_weights_in_convbert(model, config, tf_checkpoint_path): | |
"""Load tf checkpoints in a pytorch model.""" | |
try: | |
import tensorflow as tf | |
except ImportError: | |
logger.error( | |
"Loading a TensorFlow model in PyTorch, requires TensorFlow to be installed. Please see " | |
"https://www.tensorflow.org/install/ for installation instructions." | |
) | |
raise | |
tf_path = os.path.abspath(tf_checkpoint_path) | |
logger.info(f"Converting TensorFlow checkpoint from {tf_path}") | |
# Load weights from TF model | |
init_vars = tf.train.list_variables(tf_path) | |
tf_data = {} | |
for name, shape in init_vars: | |
logger.info(f"Loading TF weight {name} with shape {shape}") | |
array = tf.train.load_variable(tf_path, name) | |
tf_data[name] = array | |
param_mapping = { | |
"embeddings.word_embeddings.weight": "electra/embeddings/word_embeddings", | |
"embeddings.position_embeddings.weight": "electra/embeddings/position_embeddings", | |
"embeddings.token_type_embeddings.weight": "electra/embeddings/token_type_embeddings", | |
"embeddings.LayerNorm.weight": "electra/embeddings/LayerNorm/gamma", | |
"embeddings.LayerNorm.bias": "electra/embeddings/LayerNorm/beta", | |
"embeddings_project.weight": "electra/embeddings_project/kernel", | |
"embeddings_project.bias": "electra/embeddings_project/bias", | |
} | |
if config.num_groups > 1: | |
group_dense_name = "g_dense" | |
else: | |
group_dense_name = "dense" | |
for j in range(config.num_hidden_layers): | |
param_mapping[ | |
f"encoder.layer.{j}.attention.self.query.weight" | |
] = f"electra/encoder/layer_{j}/attention/self/query/kernel" | |
param_mapping[ | |
f"encoder.layer.{j}.attention.self.query.bias" | |
] = f"electra/encoder/layer_{j}/attention/self/query/bias" | |
param_mapping[ | |
f"encoder.layer.{j}.attention.self.key.weight" | |
] = f"electra/encoder/layer_{j}/attention/self/key/kernel" | |
param_mapping[ | |
f"encoder.layer.{j}.attention.self.key.bias" | |
] = f"electra/encoder/layer_{j}/attention/self/key/bias" | |
param_mapping[ | |
f"encoder.layer.{j}.attention.self.value.weight" | |
] = f"electra/encoder/layer_{j}/attention/self/value/kernel" | |
param_mapping[ | |
f"encoder.layer.{j}.attention.self.value.bias" | |
] = f"electra/encoder/layer_{j}/attention/self/value/bias" | |
param_mapping[ | |
f"encoder.layer.{j}.attention.self.key_conv_attn_layer.depthwise.weight" | |
] = f"electra/encoder/layer_{j}/attention/self/conv_attn_key/depthwise_kernel" | |
param_mapping[ | |
f"encoder.layer.{j}.attention.self.key_conv_attn_layer.pointwise.weight" | |
] = f"electra/encoder/layer_{j}/attention/self/conv_attn_key/pointwise_kernel" | |
param_mapping[ | |
f"encoder.layer.{j}.attention.self.key_conv_attn_layer.bias" | |
] = f"electra/encoder/layer_{j}/attention/self/conv_attn_key/bias" | |
param_mapping[ | |
f"encoder.layer.{j}.attention.self.conv_kernel_layer.weight" | |
] = f"electra/encoder/layer_{j}/attention/self/conv_attn_kernel/kernel" | |
param_mapping[ | |
f"encoder.layer.{j}.attention.self.conv_kernel_layer.bias" | |
] = f"electra/encoder/layer_{j}/attention/self/conv_attn_kernel/bias" | |
param_mapping[ | |
f"encoder.layer.{j}.attention.self.conv_out_layer.weight" | |
] = f"electra/encoder/layer_{j}/attention/self/conv_attn_point/kernel" | |
param_mapping[ | |
f"encoder.layer.{j}.attention.self.conv_out_layer.bias" | |
] = f"electra/encoder/layer_{j}/attention/self/conv_attn_point/bias" | |
param_mapping[ | |
f"encoder.layer.{j}.attention.output.dense.weight" | |
] = f"electra/encoder/layer_{j}/attention/output/dense/kernel" | |
param_mapping[ | |
f"encoder.layer.{j}.attention.output.LayerNorm.weight" | |
] = f"electra/encoder/layer_{j}/attention/output/LayerNorm/gamma" | |
param_mapping[ | |
f"encoder.layer.{j}.attention.output.dense.bias" | |
] = f"electra/encoder/layer_{j}/attention/output/dense/bias" | |
param_mapping[ | |
f"encoder.layer.{j}.attention.output.LayerNorm.bias" | |
] = f"electra/encoder/layer_{j}/attention/output/LayerNorm/beta" | |
param_mapping[ | |
f"encoder.layer.{j}.intermediate.dense.weight" | |
] = f"electra/encoder/layer_{j}/intermediate/{group_dense_name}/kernel" | |
param_mapping[ | |
f"encoder.layer.{j}.intermediate.dense.bias" | |
] = f"electra/encoder/layer_{j}/intermediate/{group_dense_name}/bias" | |
param_mapping[ | |
f"encoder.layer.{j}.output.dense.weight" | |
] = f"electra/encoder/layer_{j}/output/{group_dense_name}/kernel" | |
param_mapping[ | |
f"encoder.layer.{j}.output.dense.bias" | |
] = f"electra/encoder/layer_{j}/output/{group_dense_name}/bias" | |
param_mapping[ | |
f"encoder.layer.{j}.output.LayerNorm.weight" | |
] = f"electra/encoder/layer_{j}/output/LayerNorm/gamma" | |
param_mapping[f"encoder.layer.{j}.output.LayerNorm.bias"] = f"electra/encoder/layer_{j}/output/LayerNorm/beta" | |
for param in model.named_parameters(): | |
param_name = param[0] | |
retriever = attrgetter(param_name) | |
result = retriever(model) | |
tf_name = param_mapping[param_name] | |
value = torch.from_numpy(tf_data[tf_name]) | |
logger.info(f"TF: {tf_name}, PT: {param_name} ") | |
if tf_name.endswith("/kernel"): | |
if not tf_name.endswith("/intermediate/g_dense/kernel"): | |
if not tf_name.endswith("/output/g_dense/kernel"): | |
value = value.T | |
if tf_name.endswith("/depthwise_kernel"): | |
value = value.permute(1, 2, 0) # 2, 0, 1 | |
if tf_name.endswith("/pointwise_kernel"): | |
value = value.permute(2, 1, 0) # 2, 1, 0 | |
if tf_name.endswith("/conv_attn_key/bias"): | |
value = value.unsqueeze(-1) | |
result.data = value | |
return model | |
class ConvBertEmbeddings(nn.Module): | |
"""Construct the embeddings from word, position and token_type embeddings.""" | |
def __init__(self, config): | |
super().__init__() | |
self.word_embeddings = nn.Embedding(config.vocab_size, config.embedding_size, padding_idx=config.pad_token_id) | |
self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.embedding_size) | |
self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.embedding_size) | |
# self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load | |
# any TensorFlow checkpoint file | |
self.LayerNorm = nn.LayerNorm(config.embedding_size, eps=config.layer_norm_eps) | |
self.dropout = nn.Dropout(config.hidden_dropout_prob) | |
# position_ids (1, len position emb) is contiguous in memory and exported when serialized | |
self.register_buffer( | |
"position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)), persistent=False | |
) | |
self.register_buffer( | |
"token_type_ids", torch.zeros(self.position_ids.size(), dtype=torch.long), persistent=False | |
) | |
def forward( | |
self, | |
input_ids: Optional[torch.LongTensor] = None, | |
token_type_ids: Optional[torch.LongTensor] = None, | |
position_ids: Optional[torch.LongTensor] = None, | |
inputs_embeds: Optional[torch.FloatTensor] = None, | |
) -> torch.LongTensor: | |
if input_ids is not None: | |
input_shape = input_ids.size() | |
else: | |
input_shape = inputs_embeds.size()[:-1] | |
seq_length = input_shape[1] | |
if position_ids is None: | |
position_ids = self.position_ids[:, :seq_length] | |
# Setting the token_type_ids to the registered buffer in constructor where it is all zeros, which usually occurs | |
# when its auto-generated, registered buffer helps users when tracing the model without passing token_type_ids, solves | |
# issue #5664 | |
if token_type_ids is None: | |
if hasattr(self, "token_type_ids"): | |
buffered_token_type_ids = self.token_type_ids[:, :seq_length] | |
buffered_token_type_ids_expanded = buffered_token_type_ids.expand(input_shape[0], seq_length) | |
token_type_ids = buffered_token_type_ids_expanded | |
else: | |
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=self.position_ids.device) | |
if inputs_embeds is None: | |
inputs_embeds = self.word_embeddings(input_ids) | |
position_embeddings = self.position_embeddings(position_ids) | |
token_type_embeddings = self.token_type_embeddings(token_type_ids) | |
embeddings = inputs_embeds + position_embeddings + token_type_embeddings | |
embeddings = self.LayerNorm(embeddings) | |
embeddings = self.dropout(embeddings) | |
return embeddings | |
class ConvBertPreTrainedModel(PreTrainedModel): | |
""" | |
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained | |
models. | |
""" | |
config_class = ConvBertConfig | |
load_tf_weights = load_tf_weights_in_convbert | |
base_model_prefix = "convbert" | |
supports_gradient_checkpointing = True | |
def _init_weights(self, module): | |
"""Initialize the weights""" | |
if isinstance(module, nn.Linear): | |
# Slightly different from the TF version which uses truncated_normal for initialization | |
# cf https://github.com/pytorch/pytorch/pull/5617 | |
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) | |
if module.bias is not None: | |
module.bias.data.zero_() | |
elif isinstance(module, nn.Embedding): | |
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) | |
if module.padding_idx is not None: | |
module.weight.data[module.padding_idx].zero_() | |
elif isinstance(module, nn.LayerNorm): | |
module.bias.data.zero_() | |
module.weight.data.fill_(1.0) | |
def _set_gradient_checkpointing(self, module, value=False): | |
if isinstance(module, ConvBertEncoder): | |
module.gradient_checkpointing = value | |
class SeparableConv1D(nn.Module): | |
"""This class implements separable convolution, i.e. a depthwise and a pointwise layer""" | |
def __init__(self, config, input_filters, output_filters, kernel_size, **kwargs): | |
super().__init__() | |
self.depthwise = nn.Conv1d( | |
input_filters, | |
input_filters, | |
kernel_size=kernel_size, | |
groups=input_filters, | |
padding=kernel_size // 2, | |
bias=False, | |
) | |
self.pointwise = nn.Conv1d(input_filters, output_filters, kernel_size=1, bias=False) | |
self.bias = nn.Parameter(torch.zeros(output_filters, 1)) | |
self.depthwise.weight.data.normal_(mean=0.0, std=config.initializer_range) | |
self.pointwise.weight.data.normal_(mean=0.0, std=config.initializer_range) | |
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: | |
x = self.depthwise(hidden_states) | |
x = self.pointwise(x) | |
x += self.bias | |
return x | |
class ConvBertSelfAttention(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"): | |
raise ValueError( | |
f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention " | |
f"heads ({config.num_attention_heads})" | |
) | |
new_num_attention_heads = config.num_attention_heads // config.head_ratio | |
if new_num_attention_heads < 1: | |
self.head_ratio = config.num_attention_heads | |
self.num_attention_heads = 1 | |
else: | |
self.num_attention_heads = new_num_attention_heads | |
self.head_ratio = config.head_ratio | |
self.conv_kernel_size = config.conv_kernel_size | |
if config.hidden_size % self.num_attention_heads != 0: | |
raise ValueError("hidden_size should be divisible by num_attention_heads") | |
self.attention_head_size = (config.hidden_size // self.num_attention_heads) // 2 | |
self.all_head_size = self.num_attention_heads * self.attention_head_size | |
self.query = nn.Linear(config.hidden_size, self.all_head_size) | |
self.key = nn.Linear(config.hidden_size, self.all_head_size) | |
self.value = nn.Linear(config.hidden_size, self.all_head_size) | |
self.key_conv_attn_layer = SeparableConv1D( | |
config, config.hidden_size, self.all_head_size, self.conv_kernel_size | |
) | |
self.conv_kernel_layer = nn.Linear(self.all_head_size, self.num_attention_heads * self.conv_kernel_size) | |
self.conv_out_layer = nn.Linear(config.hidden_size, self.all_head_size) | |
self.unfold = nn.Unfold( | |
kernel_size=[self.conv_kernel_size, 1], padding=[int((self.conv_kernel_size - 1) / 2), 0] | |
) | |
self.dropout = nn.Dropout(config.attention_probs_dropout_prob) | |
def transpose_for_scores(self, x): | |
new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size) | |
x = x.view(*new_x_shape) | |
return x.permute(0, 2, 1, 3) | |
def forward( | |
self, | |
hidden_states: torch.Tensor, | |
attention_mask: Optional[torch.FloatTensor] = None, | |
head_mask: Optional[torch.FloatTensor] = None, | |
encoder_hidden_states: Optional[torch.Tensor] = None, | |
output_attentions: Optional[bool] = False, | |
) -> Tuple[torch.Tensor, Optional[torch.Tensor]]: | |
mixed_query_layer = self.query(hidden_states) | |
batch_size = hidden_states.size(0) | |
# If this is instantiated as a cross-attention module, the keys | |
# and values come from an encoder; the attention mask needs to be | |
# such that the encoder's padding tokens are not attended to. | |
if encoder_hidden_states is not None: | |
mixed_key_layer = self.key(encoder_hidden_states) | |
mixed_value_layer = self.value(encoder_hidden_states) | |
else: | |
mixed_key_layer = self.key(hidden_states) | |
mixed_value_layer = self.value(hidden_states) | |
mixed_key_conv_attn_layer = self.key_conv_attn_layer(hidden_states.transpose(1, 2)) | |
mixed_key_conv_attn_layer = mixed_key_conv_attn_layer.transpose(1, 2) | |
query_layer = self.transpose_for_scores(mixed_query_layer) | |
key_layer = self.transpose_for_scores(mixed_key_layer) | |
value_layer = self.transpose_for_scores(mixed_value_layer) | |
conv_attn_layer = torch.multiply(mixed_key_conv_attn_layer, mixed_query_layer) | |
conv_kernel_layer = self.conv_kernel_layer(conv_attn_layer) | |
conv_kernel_layer = torch.reshape(conv_kernel_layer, [-1, self.conv_kernel_size, 1]) | |
conv_kernel_layer = torch.softmax(conv_kernel_layer, dim=1) | |
conv_out_layer = self.conv_out_layer(hidden_states) | |
conv_out_layer = torch.reshape(conv_out_layer, [batch_size, -1, self.all_head_size]) | |
conv_out_layer = conv_out_layer.transpose(1, 2).contiguous().unsqueeze(-1) | |
conv_out_layer = nn.functional.unfold( | |
conv_out_layer, | |
kernel_size=[self.conv_kernel_size, 1], | |
dilation=1, | |
padding=[(self.conv_kernel_size - 1) // 2, 0], | |
stride=1, | |
) | |
conv_out_layer = conv_out_layer.transpose(1, 2).reshape( | |
batch_size, -1, self.all_head_size, self.conv_kernel_size | |
) | |
conv_out_layer = torch.reshape(conv_out_layer, [-1, self.attention_head_size, self.conv_kernel_size]) | |
conv_out_layer = torch.matmul(conv_out_layer, conv_kernel_layer) | |
conv_out_layer = torch.reshape(conv_out_layer, [-1, self.all_head_size]) | |
# Take the dot product between "query" and "key" to get the raw attention scores. | |
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2)) | |
attention_scores = attention_scores / math.sqrt(self.attention_head_size) | |
if attention_mask is not None: | |
# Apply the attention mask is (precomputed for all layers in ConvBertModel forward() function) | |
attention_scores = attention_scores + attention_mask | |
# Normalize the attention scores to probabilities. | |
attention_probs = nn.functional.softmax(attention_scores, dim=-1) | |
# This is actually dropping out entire tokens to attend to, which might | |
# seem a bit unusual, but is taken from the original Transformer paper. | |
attention_probs = self.dropout(attention_probs) | |
# Mask heads if we want to | |
if head_mask is not None: | |
attention_probs = attention_probs * head_mask | |
context_layer = torch.matmul(attention_probs, value_layer) | |
context_layer = context_layer.permute(0, 2, 1, 3).contiguous() | |
conv_out = torch.reshape(conv_out_layer, [batch_size, -1, self.num_attention_heads, self.attention_head_size]) | |
context_layer = torch.cat([context_layer, conv_out], 2) | |
# conv and context | |
new_context_layer_shape = context_layer.size()[:-2] + ( | |
self.num_attention_heads * self.attention_head_size * 2, | |
) | |
context_layer = context_layer.view(*new_context_layer_shape) | |
outputs = (context_layer, attention_probs) if output_attentions else (context_layer,) | |
return outputs | |
class ConvBertSelfOutput(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.dense = nn.Linear(config.hidden_size, config.hidden_size) | |
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) | |
self.dropout = nn.Dropout(config.hidden_dropout_prob) | |
def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor: | |
hidden_states = self.dense(hidden_states) | |
hidden_states = self.dropout(hidden_states) | |
hidden_states = self.LayerNorm(hidden_states + input_tensor) | |
return hidden_states | |
class ConvBertAttention(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.self = ConvBertSelfAttention(config) | |
self.output = ConvBertSelfOutput(config) | |
self.pruned_heads = set() | |
def prune_heads(self, heads): | |
if len(heads) == 0: | |
return | |
heads, index = find_pruneable_heads_and_indices( | |
heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads | |
) | |
# Prune linear layers | |
self.self.query = prune_linear_layer(self.self.query, index) | |
self.self.key = prune_linear_layer(self.self.key, index) | |
self.self.value = prune_linear_layer(self.self.value, index) | |
self.output.dense = prune_linear_layer(self.output.dense, index, dim=1) | |
# Update hyper params and store pruned heads | |
self.self.num_attention_heads = self.self.num_attention_heads - len(heads) | |
self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads | |
self.pruned_heads = self.pruned_heads.union(heads) | |
def forward( | |
self, | |
hidden_states: torch.Tensor, | |
attention_mask: Optional[torch.FloatTensor] = None, | |
head_mask: Optional[torch.FloatTensor] = None, | |
encoder_hidden_states: Optional[torch.Tensor] = None, | |
output_attentions: Optional[bool] = False, | |
) -> Tuple[torch.Tensor, Optional[torch.FloatTensor]]: | |
self_outputs = self.self( | |
hidden_states, | |
attention_mask, | |
head_mask, | |
encoder_hidden_states, | |
output_attentions, | |
) | |
attention_output = self.output(self_outputs[0], hidden_states) | |
outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them | |
return outputs | |
class GroupedLinearLayer(nn.Module): | |
def __init__(self, input_size, output_size, num_groups): | |
super().__init__() | |
self.input_size = input_size | |
self.output_size = output_size | |
self.num_groups = num_groups | |
self.group_in_dim = self.input_size // self.num_groups | |
self.group_out_dim = self.output_size // self.num_groups | |
self.weight = nn.Parameter(torch.empty(self.num_groups, self.group_in_dim, self.group_out_dim)) | |
self.bias = nn.Parameter(torch.empty(output_size)) | |
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: | |
batch_size = list(hidden_states.size())[0] | |
x = torch.reshape(hidden_states, [-1, self.num_groups, self.group_in_dim]) | |
x = x.permute(1, 0, 2) | |
x = torch.matmul(x, self.weight) | |
x = x.permute(1, 0, 2) | |
x = torch.reshape(x, [batch_size, -1, self.output_size]) | |
x = x + self.bias | |
return x | |
class ConvBertIntermediate(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
if config.num_groups == 1: | |
self.dense = nn.Linear(config.hidden_size, config.intermediate_size) | |
else: | |
self.dense = GroupedLinearLayer( | |
input_size=config.hidden_size, output_size=config.intermediate_size, num_groups=config.num_groups | |
) | |
if isinstance(config.hidden_act, str): | |
self.intermediate_act_fn = ACT2FN[config.hidden_act] | |
else: | |
self.intermediate_act_fn = config.hidden_act | |
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: | |
hidden_states = self.dense(hidden_states) | |
hidden_states = self.intermediate_act_fn(hidden_states) | |
return hidden_states | |
class ConvBertOutput(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
if config.num_groups == 1: | |
self.dense = nn.Linear(config.intermediate_size, config.hidden_size) | |
else: | |
self.dense = GroupedLinearLayer( | |
input_size=config.intermediate_size, output_size=config.hidden_size, num_groups=config.num_groups | |
) | |
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) | |
self.dropout = nn.Dropout(config.hidden_dropout_prob) | |
def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor: | |
hidden_states = self.dense(hidden_states) | |
hidden_states = self.dropout(hidden_states) | |
hidden_states = self.LayerNorm(hidden_states + input_tensor) | |
return hidden_states | |
class ConvBertLayer(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.chunk_size_feed_forward = config.chunk_size_feed_forward | |
self.seq_len_dim = 1 | |
self.attention = ConvBertAttention(config) | |
self.is_decoder = config.is_decoder | |
self.add_cross_attention = config.add_cross_attention | |
if self.add_cross_attention: | |
if not self.is_decoder: | |
raise TypeError(f"{self} should be used as a decoder model if cross attention is added") | |
self.crossattention = ConvBertAttention(config) | |
self.intermediate = ConvBertIntermediate(config) | |
self.output = ConvBertOutput(config) | |
def forward( | |
self, | |
hidden_states: torch.Tensor, | |
attention_mask: Optional[torch.FloatTensor] = None, | |
head_mask: Optional[torch.FloatTensor] = None, | |
encoder_hidden_states: Optional[torch.Tensor] = None, | |
encoder_attention_mask: Optional[torch.Tensor] = None, | |
output_attentions: Optional[bool] = False, | |
) -> Tuple[torch.Tensor, Optional[torch.FloatTensor]]: | |
self_attention_outputs = self.attention( | |
hidden_states, | |
attention_mask, | |
head_mask, | |
output_attentions=output_attentions, | |
) | |
attention_output = self_attention_outputs[0] | |
outputs = self_attention_outputs[1:] # add self attentions if we output attention weights | |
if self.is_decoder and encoder_hidden_states is not None: | |
if not hasattr(self, "crossattention"): | |
raise AttributeError( | |
f"If `encoder_hidden_states` are passed, {self} has to be instantiated with cross-attention layers" | |
" by setting `config.add_cross_attention=True`" | |
) | |
cross_attention_outputs = self.crossattention( | |
attention_output, | |
encoder_attention_mask, | |
head_mask, | |
encoder_hidden_states, | |
output_attentions, | |
) | |
attention_output = cross_attention_outputs[0] | |
outputs = outputs + cross_attention_outputs[1:] # add cross attentions if we output attention weights | |
layer_output = apply_chunking_to_forward( | |
self.feed_forward_chunk, self.chunk_size_feed_forward, self.seq_len_dim, attention_output | |
) | |
outputs = (layer_output,) + outputs | |
return outputs | |
def feed_forward_chunk(self, attention_output): | |
intermediate_output = self.intermediate(attention_output) | |
layer_output = self.output(intermediate_output, attention_output) | |
return layer_output | |
class ConvBertEncoder(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.config = config | |
self.layer = nn.ModuleList([ConvBertLayer(config) for _ in range(config.num_hidden_layers)]) | |
self.gradient_checkpointing = False | |
def forward( | |
self, | |
hidden_states: torch.Tensor, | |
attention_mask: Optional[torch.FloatTensor] = None, | |
head_mask: Optional[torch.FloatTensor] = None, | |
encoder_hidden_states: Optional[torch.Tensor] = None, | |
encoder_attention_mask: Optional[torch.Tensor] = None, | |
output_attentions: Optional[bool] = False, | |
output_hidden_states: Optional[bool] = False, | |
return_dict: Optional[bool] = True, | |
) -> Union[Tuple, BaseModelOutputWithCrossAttentions]: | |
all_hidden_states = () if output_hidden_states else None | |
all_self_attentions = () if output_attentions else None | |
all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None | |
for i, layer_module in enumerate(self.layer): | |
if output_hidden_states: | |
all_hidden_states = all_hidden_states + (hidden_states,) | |
layer_head_mask = head_mask[i] if head_mask is not None else None | |
if self.gradient_checkpointing and self.training: | |
def create_custom_forward(module): | |
def custom_forward(*inputs): | |
return module(*inputs, output_attentions) | |
return custom_forward | |
layer_outputs = torch.utils.checkpoint.checkpoint( | |
create_custom_forward(layer_module), | |
hidden_states, | |
attention_mask, | |
layer_head_mask, | |
encoder_hidden_states, | |
encoder_attention_mask, | |
) | |
else: | |
layer_outputs = layer_module( | |
hidden_states, | |
attention_mask, | |
layer_head_mask, | |
encoder_hidden_states, | |
encoder_attention_mask, | |
output_attentions, | |
) | |
hidden_states = layer_outputs[0] | |
if output_attentions: | |
all_self_attentions = all_self_attentions + (layer_outputs[1],) | |
if self.config.add_cross_attention: | |
all_cross_attentions = all_cross_attentions + (layer_outputs[2],) | |
if output_hidden_states: | |
all_hidden_states = all_hidden_states + (hidden_states,) | |
if not return_dict: | |
return tuple( | |
v | |
for v in [hidden_states, all_hidden_states, all_self_attentions, all_cross_attentions] | |
if v is not None | |
) | |
return BaseModelOutputWithCrossAttentions( | |
last_hidden_state=hidden_states, | |
hidden_states=all_hidden_states, | |
attentions=all_self_attentions, | |
cross_attentions=all_cross_attentions, | |
) | |
class ConvBertPredictionHeadTransform(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.dense = nn.Linear(config.hidden_size, config.hidden_size) | |
if isinstance(config.hidden_act, str): | |
self.transform_act_fn = ACT2FN[config.hidden_act] | |
else: | |
self.transform_act_fn = config.hidden_act | |
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) | |
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: | |
hidden_states = self.dense(hidden_states) | |
hidden_states = self.transform_act_fn(hidden_states) | |
hidden_states = self.LayerNorm(hidden_states) | |
return hidden_states | |
CONVBERT_START_DOCSTRING = r""" | |
This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use | |
it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and | |
behavior. | |
Parameters: | |
config ([`ConvBertConfig`]): Model configuration class with all the parameters of the model. | |
Initializing with a config file does not load the weights associated with the model, only the | |
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. | |
""" | |
CONVBERT_INPUTS_DOCSTRING = r""" | |
Args: | |
input_ids (`torch.LongTensor` of shape `({0})`): | |
Indices of input sequence tokens in the vocabulary. | |
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and | |
[`PreTrainedTokenizer.__call__`] for details. | |
[What are input IDs?](../glossary#input-ids) | |
attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*): | |
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: | |
- 1 for tokens that are **not masked**, | |
- 0 for tokens that are **masked**. | |
[What are attention masks?](../glossary#attention-mask) | |
token_type_ids (`torch.LongTensor` of shape `({0})`, *optional*): | |
Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0, | |
1]`: | |
- 0 corresponds to a *sentence A* token, | |
- 1 corresponds to a *sentence B* token. | |
[What are token type IDs?](../glossary#token-type-ids) | |
position_ids (`torch.LongTensor` of shape `({0})`, *optional*): | |
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, | |
config.max_position_embeddings - 1]`. | |
[What are position IDs?](../glossary#position-ids) | |
head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): | |
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`: | |
- 1 indicates the head is **not masked**, | |
- 0 indicates the head is **masked**. | |
inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*): | |
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This | |
is useful if you want more control over how to convert *input_ids* indices into associated vectors than the | |
model's internal embedding lookup matrix. | |
output_attentions (`bool`, *optional*): | |
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned | |
tensors for more detail. | |
output_hidden_states (`bool`, *optional*): | |
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for | |
more detail. | |
return_dict (`bool`, *optional*): | |
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. | |
""" | |
class ConvBertModel(ConvBertPreTrainedModel): | |
def __init__(self, config): | |
super().__init__(config) | |
self.embeddings = ConvBertEmbeddings(config) | |
if config.embedding_size != config.hidden_size: | |
self.embeddings_project = nn.Linear(config.embedding_size, config.hidden_size) | |
self.encoder = ConvBertEncoder(config) | |
self.config = config | |
# Initialize weights and apply final processing | |
self.post_init() | |
def get_input_embeddings(self): | |
return self.embeddings.word_embeddings | |
def set_input_embeddings(self, value): | |
self.embeddings.word_embeddings = value | |
def _prune_heads(self, heads_to_prune): | |
""" | |
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base | |
class PreTrainedModel | |
""" | |
for layer, heads in heads_to_prune.items(): | |
self.encoder.layer[layer].attention.prune_heads(heads) | |
def forward( | |
self, | |
input_ids: Optional[torch.LongTensor] = None, | |
attention_mask: Optional[torch.FloatTensor] = None, | |
token_type_ids: Optional[torch.LongTensor] = None, | |
position_ids: Optional[torch.LongTensor] = None, | |
head_mask: Optional[torch.FloatTensor] = None, | |
inputs_embeds: Optional[torch.FloatTensor] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
) -> Union[Tuple, BaseModelOutputWithCrossAttentions]: | |
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions | |
output_hidden_states = ( | |
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states | |
) | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
if input_ids is not None and inputs_embeds is not None: | |
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") | |
elif input_ids is not None: | |
self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask) | |
input_shape = input_ids.size() | |
elif inputs_embeds is not None: | |
input_shape = inputs_embeds.size()[:-1] | |
else: | |
raise ValueError("You have to specify either input_ids or inputs_embeds") | |
batch_size, seq_length = input_shape | |
device = input_ids.device if input_ids is not None else inputs_embeds.device | |
if attention_mask is None: | |
attention_mask = torch.ones(input_shape, device=device) | |
if token_type_ids is None: | |
if hasattr(self.embeddings, "token_type_ids"): | |
buffered_token_type_ids = self.embeddings.token_type_ids[:, :seq_length] | |
buffered_token_type_ids_expanded = buffered_token_type_ids.expand(batch_size, seq_length) | |
token_type_ids = buffered_token_type_ids_expanded | |
else: | |
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device) | |
extended_attention_mask = self.get_extended_attention_mask(attention_mask, input_shape) | |
head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers) | |
hidden_states = self.embeddings( | |
input_ids=input_ids, position_ids=position_ids, token_type_ids=token_type_ids, inputs_embeds=inputs_embeds | |
) | |
if hasattr(self, "embeddings_project"): | |
hidden_states = self.embeddings_project(hidden_states) | |
hidden_states = self.encoder( | |
hidden_states, | |
attention_mask=extended_attention_mask, | |
head_mask=head_mask, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) | |
return hidden_states | |
class ConvBertGeneratorPredictions(nn.Module): | |
"""Prediction module for the generator, made up of two dense layers.""" | |
def __init__(self, config): | |
super().__init__() | |
self.LayerNorm = nn.LayerNorm(config.embedding_size, eps=config.layer_norm_eps) | |
self.dense = nn.Linear(config.hidden_size, config.embedding_size) | |
def forward(self, generator_hidden_states: torch.FloatTensor) -> torch.FloatTensor: | |
hidden_states = self.dense(generator_hidden_states) | |
hidden_states = get_activation("gelu")(hidden_states) | |
hidden_states = self.LayerNorm(hidden_states) | |
return hidden_states | |
class ConvBertForMaskedLM(ConvBertPreTrainedModel): | |
_tied_weights_keys = ["generator.lm_head.weight"] | |
def __init__(self, config): | |
super().__init__(config) | |
self.convbert = ConvBertModel(config) | |
self.generator_predictions = ConvBertGeneratorPredictions(config) | |
self.generator_lm_head = nn.Linear(config.embedding_size, config.vocab_size) | |
# Initialize weights and apply final processing | |
self.post_init() | |
def get_output_embeddings(self): | |
return self.generator_lm_head | |
def set_output_embeddings(self, word_embeddings): | |
self.generator_lm_head = word_embeddings | |
def forward( | |
self, | |
input_ids: Optional[torch.LongTensor] = None, | |
attention_mask: Optional[torch.FloatTensor] = None, | |
token_type_ids: Optional[torch.LongTensor] = None, | |
position_ids: Optional[torch.LongTensor] = None, | |
head_mask: Optional[torch.FloatTensor] = None, | |
inputs_embeds: Optional[torch.FloatTensor] = None, | |
labels: Optional[torch.LongTensor] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
) -> Union[Tuple, MaskedLMOutput]: | |
r""" | |
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): | |
Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ..., | |
config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the | |
loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]` | |
""" | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
generator_hidden_states = self.convbert( | |
input_ids, | |
attention_mask, | |
token_type_ids, | |
position_ids, | |
head_mask, | |
inputs_embeds, | |
output_attentions, | |
output_hidden_states, | |
return_dict, | |
) | |
generator_sequence_output = generator_hidden_states[0] | |
prediction_scores = self.generator_predictions(generator_sequence_output) | |
prediction_scores = self.generator_lm_head(prediction_scores) | |
loss = None | |
# Masked language modeling softmax layer | |
if labels is not None: | |
loss_fct = nn.CrossEntropyLoss() # -100 index = padding token | |
loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1)) | |
if not return_dict: | |
output = (prediction_scores,) + generator_hidden_states[1:] | |
return ((loss,) + output) if loss is not None else output | |
return MaskedLMOutput( | |
loss=loss, | |
logits=prediction_scores, | |
hidden_states=generator_hidden_states.hidden_states, | |
attentions=generator_hidden_states.attentions, | |
) | |
class ConvBertClassificationHead(nn.Module): | |
"""Head for sentence-level classification tasks.""" | |
def __init__(self, config): | |
super().__init__() | |
self.dense = nn.Linear(config.hidden_size, config.hidden_size) | |
classifier_dropout = ( | |
config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob | |
) | |
self.dropout = nn.Dropout(classifier_dropout) | |
self.out_proj = nn.Linear(config.hidden_size, config.num_labels) | |
self.config = config | |
def forward(self, hidden_states: torch.Tensor, **kwargs) -> torch.Tensor: | |
x = hidden_states[:, 0, :] # take <s> token (equiv. to [CLS]) | |
x = self.dropout(x) | |
x = self.dense(x) | |
x = ACT2FN[self.config.hidden_act](x) | |
x = self.dropout(x) | |
x = self.out_proj(x) | |
return x | |
class ConvBertForSequenceClassification(ConvBertPreTrainedModel): | |
def __init__(self, config): | |
super().__init__(config) | |
self.num_labels = config.num_labels | |
self.config = config | |
self.convbert = ConvBertModel(config) | |
self.classifier = ConvBertClassificationHead(config) | |
# Initialize weights and apply final processing | |
self.post_init() | |
def forward( | |
self, | |
input_ids: Optional[torch.LongTensor] = None, | |
attention_mask: Optional[torch.FloatTensor] = None, | |
token_type_ids: Optional[torch.LongTensor] = None, | |
position_ids: Optional[torch.LongTensor] = None, | |
head_mask: Optional[torch.FloatTensor] = None, | |
inputs_embeds: Optional[torch.FloatTensor] = None, | |
labels: Optional[torch.LongTensor] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
) -> Union[Tuple, SequenceClassifierOutput]: | |
r""" | |
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): | |
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., | |
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If | |
`config.num_labels > 1` a classification loss is computed (Cross-Entropy). | |
""" | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
outputs = self.convbert( | |
input_ids, | |
attention_mask=attention_mask, | |
token_type_ids=token_type_ids, | |
position_ids=position_ids, | |
head_mask=head_mask, | |
inputs_embeds=inputs_embeds, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) | |
sequence_output = outputs[0] | |
logits = self.classifier(sequence_output) | |
loss = None | |
if labels is not None: | |
if self.config.problem_type is None: | |
if self.num_labels == 1: | |
self.config.problem_type = "regression" | |
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): | |
self.config.problem_type = "single_label_classification" | |
else: | |
self.config.problem_type = "multi_label_classification" | |
if self.config.problem_type == "regression": | |
loss_fct = MSELoss() | |
if self.num_labels == 1: | |
loss = loss_fct(logits.squeeze(), labels.squeeze()) | |
else: | |
loss = loss_fct(logits, labels) | |
elif self.config.problem_type == "single_label_classification": | |
loss_fct = CrossEntropyLoss() | |
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) | |
elif self.config.problem_type == "multi_label_classification": | |
loss_fct = BCEWithLogitsLoss() | |
loss = loss_fct(logits, labels) | |
if not return_dict: | |
output = (logits,) + outputs[1:] | |
return ((loss,) + output) if loss is not None else output | |
return SequenceClassifierOutput( | |
loss=loss, | |
logits=logits, | |
hidden_states=outputs.hidden_states, | |
attentions=outputs.attentions, | |
) | |
class ConvBertForMultipleChoice(ConvBertPreTrainedModel): | |
def __init__(self, config): | |
super().__init__(config) | |
self.convbert = ConvBertModel(config) | |
self.sequence_summary = SequenceSummary(config) | |
self.classifier = nn.Linear(config.hidden_size, 1) | |
# Initialize weights and apply final processing | |
self.post_init() | |
def forward( | |
self, | |
input_ids: Optional[torch.LongTensor] = None, | |
attention_mask: Optional[torch.FloatTensor] = None, | |
token_type_ids: Optional[torch.LongTensor] = None, | |
position_ids: Optional[torch.LongTensor] = None, | |
head_mask: Optional[torch.FloatTensor] = None, | |
inputs_embeds: Optional[torch.FloatTensor] = None, | |
labels: Optional[torch.LongTensor] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
) -> Union[Tuple, MultipleChoiceModelOutput]: | |
r""" | |
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): | |
Labels for computing the multiple choice classification loss. Indices should be in `[0, ..., | |
num_choices-1]` where `num_choices` is the size of the second dimension of the input tensors. (See | |
`input_ids` above) | |
""" | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
num_choices = input_ids.shape[1] if input_ids is not None else inputs_embeds.shape[1] | |
input_ids = input_ids.view(-1, input_ids.size(-1)) if input_ids is not None else None | |
attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None | |
token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1)) if token_type_ids is not None else None | |
position_ids = position_ids.view(-1, position_ids.size(-1)) if position_ids is not None else None | |
inputs_embeds = ( | |
inputs_embeds.view(-1, inputs_embeds.size(-2), inputs_embeds.size(-1)) | |
if inputs_embeds is not None | |
else None | |
) | |
outputs = self.convbert( | |
input_ids, | |
attention_mask=attention_mask, | |
token_type_ids=token_type_ids, | |
position_ids=position_ids, | |
head_mask=head_mask, | |
inputs_embeds=inputs_embeds, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) | |
sequence_output = outputs[0] | |
pooled_output = self.sequence_summary(sequence_output) | |
logits = self.classifier(pooled_output) | |
reshaped_logits = logits.view(-1, num_choices) | |
loss = None | |
if labels is not None: | |
loss_fct = CrossEntropyLoss() | |
loss = loss_fct(reshaped_logits, labels) | |
if not return_dict: | |
output = (reshaped_logits,) + outputs[1:] | |
return ((loss,) + output) if loss is not None else output | |
return MultipleChoiceModelOutput( | |
loss=loss, | |
logits=reshaped_logits, | |
hidden_states=outputs.hidden_states, | |
attentions=outputs.attentions, | |
) | |
class ConvBertForTokenClassification(ConvBertPreTrainedModel): | |
def __init__(self, config): | |
super().__init__(config) | |
self.num_labels = config.num_labels | |
self.convbert = ConvBertModel(config) | |
classifier_dropout = ( | |
config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob | |
) | |
self.dropout = nn.Dropout(classifier_dropout) | |
self.classifier = nn.Linear(config.hidden_size, config.num_labels) | |
# Initialize weights and apply final processing | |
self.post_init() | |
def forward( | |
self, | |
input_ids: Optional[torch.LongTensor] = None, | |
attention_mask: Optional[torch.FloatTensor] = None, | |
token_type_ids: Optional[torch.LongTensor] = None, | |
position_ids: Optional[torch.LongTensor] = None, | |
head_mask: Optional[torch.FloatTensor] = None, | |
inputs_embeds: Optional[torch.FloatTensor] = None, | |
labels: Optional[torch.LongTensor] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
) -> Union[Tuple, TokenClassifierOutput]: | |
r""" | |
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): | |
Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`. | |
""" | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
outputs = self.convbert( | |
input_ids, | |
attention_mask=attention_mask, | |
token_type_ids=token_type_ids, | |
position_ids=position_ids, | |
head_mask=head_mask, | |
inputs_embeds=inputs_embeds, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) | |
sequence_output = outputs[0] | |
sequence_output = self.dropout(sequence_output) | |
logits = self.classifier(sequence_output) | |
loss = None | |
if labels is not None: | |
loss_fct = CrossEntropyLoss() | |
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) | |
if not return_dict: | |
output = (logits,) + outputs[1:] | |
return ((loss,) + output) if loss is not None else output | |
return TokenClassifierOutput( | |
loss=loss, | |
logits=logits, | |
hidden_states=outputs.hidden_states, | |
attentions=outputs.attentions, | |
) | |
class ConvBertForQuestionAnswering(ConvBertPreTrainedModel): | |
def __init__(self, config): | |
super().__init__(config) | |
self.num_labels = config.num_labels | |
self.convbert = ConvBertModel(config) | |
self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels) | |
# Initialize weights and apply final processing | |
self.post_init() | |
def forward( | |
self, | |
input_ids: Optional[torch.LongTensor] = None, | |
attention_mask: Optional[torch.FloatTensor] = None, | |
token_type_ids: Optional[torch.LongTensor] = None, | |
position_ids: Optional[torch.LongTensor] = None, | |
head_mask: Optional[torch.FloatTensor] = None, | |
inputs_embeds: Optional[torch.FloatTensor] = None, | |
start_positions: Optional[torch.LongTensor] = None, | |
end_positions: Optional[torch.LongTensor] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
) -> Union[Tuple, QuestionAnsweringModelOutput]: | |
r""" | |
start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): | |
Labels for position (index) of the start of the labelled span for computing the token classification loss. | |
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence | |
are not taken into account for computing the loss. | |
end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): | |
Labels for position (index) of the end of the labelled span for computing the token classification loss. | |
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence | |
are not taken into account for computing the loss. | |
""" | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
outputs = self.convbert( | |
input_ids, | |
attention_mask=attention_mask, | |
token_type_ids=token_type_ids, | |
position_ids=position_ids, | |
head_mask=head_mask, | |
inputs_embeds=inputs_embeds, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) | |
sequence_output = outputs[0] | |
logits = self.qa_outputs(sequence_output) | |
start_logits, end_logits = logits.split(1, dim=-1) | |
start_logits = start_logits.squeeze(-1).contiguous() | |
end_logits = end_logits.squeeze(-1).contiguous() | |
total_loss = None | |
if start_positions is not None and end_positions is not None: | |
# If we are on multi-GPU, split add a dimension | |
if len(start_positions.size()) > 1: | |
start_positions = start_positions.squeeze(-1) | |
if len(end_positions.size()) > 1: | |
end_positions = end_positions.squeeze(-1) | |
# sometimes the start/end positions are outside our model inputs, we ignore these terms | |
ignored_index = start_logits.size(1) | |
start_positions = start_positions.clamp(0, ignored_index) | |
end_positions = end_positions.clamp(0, ignored_index) | |
loss_fct = CrossEntropyLoss(ignore_index=ignored_index) | |
start_loss = loss_fct(start_logits, start_positions) | |
end_loss = loss_fct(end_logits, end_positions) | |
total_loss = (start_loss + end_loss) / 2 | |
if not return_dict: | |
output = (start_logits, end_logits) + outputs[1:] | |
return ((total_loss,) + output) if total_loss is not None else output | |
return QuestionAnsweringModelOutput( | |
loss=total_loss, | |
start_logits=start_logits, | |
end_logits=end_logits, | |
hidden_states=outputs.hidden_states, | |
attentions=outputs.attentions, | |
) | |