Spaces:
Starting
on
T4
Starting
on
T4
# coding=utf-8 | |
# Copyright 2021 Facebook AI Research (FAIR) and The HuggingFace Inc. team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
""" DeiT model configuration""" | |
from collections import OrderedDict | |
from typing import Mapping | |
from packaging import version | |
from ...configuration_utils import PretrainedConfig | |
from ...onnx import OnnxConfig | |
from ...utils import logging | |
logger = logging.get_logger(__name__) | |
DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP = { | |
"facebook/deit-base-distilled-patch16-224": ( | |
"https://huggingface.co/facebook/deit-base-patch16-224/resolve/main/config.json" | |
), | |
# See all DeiT models at https://huggingface.co/models?filter=deit | |
} | |
class DeiTConfig(PretrainedConfig): | |
r""" | |
This is the configuration class to store the configuration of a [`DeiTModel`]. It is used to instantiate an DeiT | |
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the | |
defaults will yield a similar configuration to that of the DeiT | |
[facebook/deit-base-distilled-patch16-224](https://huggingface.co/facebook/deit-base-distilled-patch16-224) | |
architecture. | |
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the | |
documentation from [`PretrainedConfig`] for more information. | |
Args: | |
hidden_size (`int`, *optional*, defaults to 768): | |
Dimensionality of the encoder layers and the pooler layer. | |
num_hidden_layers (`int`, *optional*, defaults to 12): | |
Number of hidden layers in the Transformer encoder. | |
num_attention_heads (`int`, *optional*, defaults to 12): | |
Number of attention heads for each attention layer in the Transformer encoder. | |
intermediate_size (`int`, *optional*, defaults to 3072): | |
Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder. | |
hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`): | |
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, | |
`"relu"`, `"selu"` and `"gelu_new"` are supported. | |
hidden_dropout_prob (`float`, *optional*, defaults to 0.0): | |
The dropout probabilitiy for all fully connected layers in the embeddings, encoder, and pooler. | |
attention_probs_dropout_prob (`float`, *optional*, defaults to 0.0): | |
The dropout ratio for the attention probabilities. | |
initializer_range (`float`, *optional*, defaults to 0.02): | |
The standard deviation of the truncated_normal_initializer for initializing all weight matrices. | |
layer_norm_eps (`float`, *optional*, defaults to 1e-12): | |
The epsilon used by the layer normalization layers. | |
image_size (`int`, *optional*, defaults to 224): | |
The size (resolution) of each image. | |
patch_size (`int`, *optional*, defaults to 16): | |
The size (resolution) of each patch. | |
num_channels (`int`, *optional*, defaults to 3): | |
The number of input channels. | |
qkv_bias (`bool`, *optional*, defaults to `True`): | |
Whether to add a bias to the queries, keys and values. | |
encoder_stride (`int`, *optional*, defaults to 16): | |
Factor to increase the spatial resolution by in the decoder head for masked image modeling. | |
Example: | |
```python | |
>>> from transformers import DeiTConfig, DeiTModel | |
>>> # Initializing a DeiT deit-base-distilled-patch16-224 style configuration | |
>>> configuration = DeiTConfig() | |
>>> # Initializing a model (with random weights) from the deit-base-distilled-patch16-224 style configuration | |
>>> model = DeiTModel(configuration) | |
>>> # Accessing the model configuration | |
>>> configuration = model.config | |
```""" | |
model_type = "deit" | |
def __init__( | |
self, | |
hidden_size=768, | |
num_hidden_layers=12, | |
num_attention_heads=12, | |
intermediate_size=3072, | |
hidden_act="gelu", | |
hidden_dropout_prob=0.0, | |
attention_probs_dropout_prob=0.0, | |
initializer_range=0.02, | |
layer_norm_eps=1e-12, | |
image_size=224, | |
patch_size=16, | |
num_channels=3, | |
qkv_bias=True, | |
encoder_stride=16, | |
**kwargs, | |
): | |
super().__init__(**kwargs) | |
self.hidden_size = hidden_size | |
self.num_hidden_layers = num_hidden_layers | |
self.num_attention_heads = num_attention_heads | |
self.intermediate_size = intermediate_size | |
self.hidden_act = hidden_act | |
self.hidden_dropout_prob = hidden_dropout_prob | |
self.attention_probs_dropout_prob = attention_probs_dropout_prob | |
self.initializer_range = initializer_range | |
self.layer_norm_eps = layer_norm_eps | |
self.image_size = image_size | |
self.patch_size = patch_size | |
self.num_channels = num_channels | |
self.qkv_bias = qkv_bias | |
self.encoder_stride = encoder_stride | |
class DeiTOnnxConfig(OnnxConfig): | |
torch_onnx_minimum_version = version.parse("1.11") | |
def inputs(self) -> Mapping[str, Mapping[int, str]]: | |
return OrderedDict( | |
[ | |
("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), | |
] | |
) | |
def atol_for_validation(self) -> float: | |
return 1e-4 | |