Update app.py
Browse files
app.py
CHANGED
@@ -109,12 +109,12 @@ def generate(image, pdfs, temperature=0.9, max_new_tokens=1500, top_p=0.95, repe
|
|
109 |
vector_store = Chroma.from_documents(texts, embeddings, collection_metadata = {"hnsw:space":"cosine"}, persist_directory="stores/story_cosine" )
|
110 |
print("vector store created........................")
|
111 |
|
112 |
-
load_vector_store = Chroma(persist_directory="stores/story_cosine", embedding_function=embeddings)
|
113 |
# persist_directory="stores/story_cosine": laod the existing vector store form "stores/story_cosine"
|
114 |
# embedding_function=embeddings: using the bge embedding model when add the new data to the vector store
|
115 |
|
116 |
# Only get the k most similar document from the dataset
|
117 |
-
retriever =
|
118 |
|
119 |
image_caption, gender, age, emotion = get_image_info(image)
|
120 |
print("............................................")
|
|
|
109 |
vector_store = Chroma.from_documents(texts, embeddings, collection_metadata = {"hnsw:space":"cosine"}, persist_directory="stores/story_cosine" )
|
110 |
print("vector store created........................")
|
111 |
|
112 |
+
# load_vector_store = Chroma(persist_directory="stores/story_cosine", embedding_function=embeddings)
|
113 |
# persist_directory="stores/story_cosine": laod the existing vector store form "stores/story_cosine"
|
114 |
# embedding_function=embeddings: using the bge embedding model when add the new data to the vector store
|
115 |
|
116 |
# Only get the k most similar document from the dataset
|
117 |
+
retriever = vector_store.as_retriever(search_kwargs={"k":top_k})
|
118 |
|
119 |
image_caption, gender, age, emotion = get_image_info(image)
|
120 |
print("............................................")
|