IDM-VTON
update IDM-VTON Demo
938e515
raw
history blame contribute delete
No virus
11.3 kB
// Copyright (c) Facebook, Inc. and its affiliates.
#pragma once
#include <cassert>
#include <cmath>
#if defined(__CUDACC__) || __HCC__ == 1 || __HIP__ == 1
// Designates functions callable from the host (CPU) and the device (GPU)
#define HOST_DEVICE __host__ __device__
#define HOST_DEVICE_INLINE HOST_DEVICE __forceinline__
#else
#include <algorithm>
#define HOST_DEVICE
#define HOST_DEVICE_INLINE HOST_DEVICE inline
#endif
namespace detectron2 {
namespace {
template <typename T>
struct RotatedBox {
T x_ctr, y_ctr, w, h, a;
};
template <typename T>
struct Point {
T x, y;
HOST_DEVICE_INLINE Point(const T& px = 0, const T& py = 0) : x(px), y(py) {}
HOST_DEVICE_INLINE Point operator+(const Point& p) const {
return Point(x + p.x, y + p.y);
}
HOST_DEVICE_INLINE Point& operator+=(const Point& p) {
x += p.x;
y += p.y;
return *this;
}
HOST_DEVICE_INLINE Point operator-(const Point& p) const {
return Point(x - p.x, y - p.y);
}
HOST_DEVICE_INLINE Point operator*(const T coeff) const {
return Point(x * coeff, y * coeff);
}
};
template <typename T>
HOST_DEVICE_INLINE T dot_2d(const Point<T>& A, const Point<T>& B) {
return A.x * B.x + A.y * B.y;
}
// R: result type. can be different from input type
template <typename T, typename R = T>
HOST_DEVICE_INLINE R cross_2d(const Point<T>& A, const Point<T>& B) {
return static_cast<R>(A.x) * static_cast<R>(B.y) -
static_cast<R>(B.x) * static_cast<R>(A.y);
}
template <typename T>
HOST_DEVICE_INLINE void get_rotated_vertices(
const RotatedBox<T>& box,
Point<T> (&pts)[4]) {
// M_PI / 180. == 0.01745329251
double theta = box.a * 0.01745329251;
T cosTheta2 = (T)cos(theta) * 0.5f;
T sinTheta2 = (T)sin(theta) * 0.5f;
// y: top --> down; x: left --> right
pts[0].x = box.x_ctr + sinTheta2 * box.h + cosTheta2 * box.w;
pts[0].y = box.y_ctr + cosTheta2 * box.h - sinTheta2 * box.w;
pts[1].x = box.x_ctr - sinTheta2 * box.h + cosTheta2 * box.w;
pts[1].y = box.y_ctr - cosTheta2 * box.h - sinTheta2 * box.w;
pts[2].x = 2 * box.x_ctr - pts[0].x;
pts[2].y = 2 * box.y_ctr - pts[0].y;
pts[3].x = 2 * box.x_ctr - pts[1].x;
pts[3].y = 2 * box.y_ctr - pts[1].y;
}
template <typename T>
HOST_DEVICE_INLINE int get_intersection_points(
const Point<T> (&pts1)[4],
const Point<T> (&pts2)[4],
Point<T> (&intersections)[24]) {
// Line vector
// A line from p1 to p2 is: p1 + (p2-p1)*t, t=[0,1]
Point<T> vec1[4], vec2[4];
for (int i = 0; i < 4; i++) {
vec1[i] = pts1[(i + 1) % 4] - pts1[i];
vec2[i] = pts2[(i + 1) % 4] - pts2[i];
}
// When computing the intersection area, it doesn't hurt if we have
// more (duplicated/approximate) intersections/vertices than needed,
// while it can cause drastic difference if we miss an intersection/vertex.
// Therefore, we add an epsilon to relax the comparisons between
// the float point numbers that decide the intersection points.
double EPS = 1e-5;
// Line test - test all line combos for intersection
int num = 0; // number of intersections
for (int i = 0; i < 4; i++) {
for (int j = 0; j < 4; j++) {
// Solve for 2x2 Ax=b
T det = cross_2d<T>(vec2[j], vec1[i]);
// This takes care of parallel lines
if (fabs(det) <= 1e-14) {
continue;
}
auto vec12 = pts2[j] - pts1[i];
T t1 = cross_2d<T>(vec2[j], vec12) / det;
T t2 = cross_2d<T>(vec1[i], vec12) / det;
if (t1 > -EPS && t1 < 1.0f + EPS && t2 > -EPS && t2 < 1.0f + EPS) {
intersections[num++] = pts1[i] + vec1[i] * t1;
}
}
}
// Check for vertices of rect1 inside rect2
{
const auto& AB = vec2[0];
const auto& DA = vec2[3];
auto ABdotAB = dot_2d<T>(AB, AB);
auto ADdotAD = dot_2d<T>(DA, DA);
for (int i = 0; i < 4; i++) {
// assume ABCD is the rectangle, and P is the point to be judged
// P is inside ABCD iff. P's projection on AB lies within AB
// and P's projection on AD lies within AD
auto AP = pts1[i] - pts2[0];
auto APdotAB = dot_2d<T>(AP, AB);
auto APdotAD = -dot_2d<T>(AP, DA);
if ((APdotAB > -EPS) && (APdotAD > -EPS) && (APdotAB < ABdotAB + EPS) &&
(APdotAD < ADdotAD + EPS)) {
intersections[num++] = pts1[i];
}
}
}
// Reverse the check - check for vertices of rect2 inside rect1
{
const auto& AB = vec1[0];
const auto& DA = vec1[3];
auto ABdotAB = dot_2d<T>(AB, AB);
auto ADdotAD = dot_2d<T>(DA, DA);
for (int i = 0; i < 4; i++) {
auto AP = pts2[i] - pts1[0];
auto APdotAB = dot_2d<T>(AP, AB);
auto APdotAD = -dot_2d<T>(AP, DA);
if ((APdotAB > -EPS) && (APdotAD > -EPS) && (APdotAB < ABdotAB + EPS) &&
(APdotAD < ADdotAD + EPS)) {
intersections[num++] = pts2[i];
}
}
}
return num;
}
template <typename T>
HOST_DEVICE_INLINE int convex_hull_graham(
const Point<T> (&p)[24],
const int& num_in,
Point<T> (&q)[24],
bool shift_to_zero = false) {
assert(num_in >= 2);
// Step 1:
// Find point with minimum y
// if more than 1 points have the same minimum y,
// pick the one with the minimum x.
int t = 0;
for (int i = 1; i < num_in; i++) {
if (p[i].y < p[t].y || (p[i].y == p[t].y && p[i].x < p[t].x)) {
t = i;
}
}
auto& start = p[t]; // starting point
// Step 2:
// Subtract starting point from every points (for sorting in the next step)
for (int i = 0; i < num_in; i++) {
q[i] = p[i] - start;
}
// Swap the starting point to position 0
auto tmp = q[0];
q[0] = q[t];
q[t] = tmp;
// Step 3:
// Sort point 1 ~ num_in according to their relative cross-product values
// (essentially sorting according to angles)
// If the angles are the same, sort according to their distance to origin
T dist[24];
#if defined(__CUDACC__) || __HCC__ == 1 || __HIP__ == 1
// compute distance to origin before sort, and sort them together with the
// points
for (int i = 0; i < num_in; i++) {
dist[i] = dot_2d<T>(q[i], q[i]);
}
// CUDA version
// In the future, we can potentially use thrust
// for sorting here to improve speed (though not guaranteed)
for (int i = 1; i < num_in - 1; i++) {
for (int j = i + 1; j < num_in; j++) {
T crossProduct = cross_2d<T>(q[i], q[j]);
if ((crossProduct < -1e-6) ||
(fabs(crossProduct) < 1e-6 && dist[i] > dist[j])) {
auto q_tmp = q[i];
q[i] = q[j];
q[j] = q_tmp;
auto dist_tmp = dist[i];
dist[i] = dist[j];
dist[j] = dist_tmp;
}
}
}
#else
// CPU version
// std::sort(
// q + 1, q + num_in, [](const Point<T>& A, const Point<T>& B) -> bool {
// T temp = cross_2d<T>(A, B);
// if (fabs(temp) < 1e-6) {
// return dot_2d<T>(A, A) < dot_2d<T>(B, B);
// } else {
// return temp > 0;
// }
// });
for (int i = 0; i < num_in; i++) {
dist[i] = dot_2d<T>(q[i], q[i]);
}
for (int i = 1; i < num_in - 1; i++) {
for (int j = i + 1; j < num_in; j++) {
T crossProduct = cross_2d<T>(q[i], q[j]);
if ((crossProduct < -1e-6) ||
(fabs(crossProduct) < 1e-6 && dist[i] > dist[j])) {
auto q_tmp = q[i];
q[i] = q[j];
q[j] = q_tmp;
auto dist_tmp = dist[i];
dist[i] = dist[j];
dist[j] = dist_tmp;
}
}
}
// compute distance to origin after sort, since the points are now different.
for (int i = 0; i < num_in; i++) {
dist[i] = dot_2d<T>(q[i], q[i]);
}
#endif
// Step 4:
// Make sure there are at least 2 points (that don't overlap with each other)
// in the stack
int k; // index of the non-overlapped second point
for (k = 1; k < num_in; k++) {
if (dist[k] > 1e-8) {
break;
}
}
if (k == num_in) {
// We reach the end, which means the convex hull is just one point
q[0] = p[t];
return 1;
}
q[1] = q[k];
int m = 2; // 2 points in the stack
// Step 5:
// Finally we can start the scanning process.
// When a non-convex relationship between the 3 points is found
// (either concave shape or duplicated points),
// we pop the previous point from the stack
// until the 3-point relationship is convex again, or
// until the stack only contains two points
for (int i = k + 1; i < num_in; i++) {
while (m > 1) {
auto q1 = q[i] - q[m - 2], q2 = q[m - 1] - q[m - 2];
// cross_2d() uses FMA and therefore computes round(round(q1.x*q2.y) -
// q2.x*q1.y) So it may not return 0 even when q1==q2. Therefore we
// compare round(q1.x*q2.y) and round(q2.x*q1.y) directly. (round means
// round to nearest floating point).
if (q1.x * q2.y >= q2.x * q1.y)
m--;
else
break;
}
// Using double also helps, but float can solve the issue for now.
// while (m > 1 && cross_2d<T, double>(q[i] - q[m - 2], q[m - 1] - q[m - 2])
// >= 0) {
// m--;
// }
q[m++] = q[i];
}
// Step 6 (Optional):
// In general sense we need the original coordinates, so we
// need to shift the points back (reverting Step 2)
// But if we're only interested in getting the area/perimeter of the shape
// We can simply return.
if (!shift_to_zero) {
for (int i = 0; i < m; i++) {
q[i] += start;
}
}
return m;
}
template <typename T>
HOST_DEVICE_INLINE T polygon_area(const Point<T> (&q)[24], const int& m) {
if (m <= 2) {
return 0;
}
T area = 0;
for (int i = 1; i < m - 1; i++) {
area += fabs(cross_2d<T>(q[i] - q[0], q[i + 1] - q[0]));
}
return area / 2.0;
}
template <typename T>
HOST_DEVICE_INLINE T rotated_boxes_intersection(
const RotatedBox<T>& box1,
const RotatedBox<T>& box2) {
// There are up to 4 x 4 + 4 + 4 = 24 intersections (including dups) returned
// from rotated_rect_intersection_pts
Point<T> intersectPts[24], orderedPts[24];
Point<T> pts1[4];
Point<T> pts2[4];
get_rotated_vertices<T>(box1, pts1);
get_rotated_vertices<T>(box2, pts2);
int num = get_intersection_points<T>(pts1, pts2, intersectPts);
if (num <= 2) {
return 0.0;
}
// Convex Hull to order the intersection points in clockwise order and find
// the contour area.
int num_convex = convex_hull_graham<T>(intersectPts, num, orderedPts, true);
return polygon_area<T>(orderedPts, num_convex);
}
} // namespace
template <typename T>
HOST_DEVICE_INLINE T
single_box_iou_rotated(T const* const box1_raw, T const* const box2_raw) {
// shift center to the middle point to achieve higher precision in result
RotatedBox<T> box1, box2;
auto center_shift_x = (box1_raw[0] + box2_raw[0]) / 2.0;
auto center_shift_y = (box1_raw[1] + box2_raw[1]) / 2.0;
box1.x_ctr = box1_raw[0] - center_shift_x;
box1.y_ctr = box1_raw[1] - center_shift_y;
box1.w = box1_raw[2];
box1.h = box1_raw[3];
box1.a = box1_raw[4];
box2.x_ctr = box2_raw[0] - center_shift_x;
box2.y_ctr = box2_raw[1] - center_shift_y;
box2.w = box2_raw[2];
box2.h = box2_raw[3];
box2.a = box2_raw[4];
T area1 = box1.w * box1.h;
T area2 = box2.w * box2.h;
if (area1 < 1e-14 || area2 < 1e-14) {
return 0.f;
}
T intersection = rotated_boxes_intersection<T>(box1, box2);
T iou = intersection / (area1 + area2 - intersection);
return iou;
}
} // namespace detectron2