yilunzhao's picture
Update app.py
7f523d7 verified
raw
history blame
1.87 kB
import os
import gradio as gr
import torch
import spaces
from peft import PeftModel
from transformers import AutoModelForCausalLM, AutoTokenizer
# Load model and tokenizer if a GPU is available
if torch.cuda.is_available():
model_id = "allenai/OLMo-7B-hf"
adapters_name = "yilunzhao/olmo-finetuned"
model = AutoModelForCausalLM.from_pretrained(model_id, device_map="auto", trust_remote_code=True)
model = PeftModel.from_pretrained(model, adapters_name)
tokenizer = AutoTokenizer.from_pretrained(model_id, trust_remote_code=True)
else:
raise EnvironmentError("CUDA device not available. Please run on a GPU-enabled environment.")
# Basic function to generate response based on passage and question
@spaces.GPU
def generate_response(passage: str, question: str) -> str:
# Prepare the input text by combining the passage and question
message = [f"Passage: {passage}\nQuestion: {question}\nAnswer:"]
inputs = tokenizer(message, return_tensors='pt', return_token_type_ids=False).to('cuda')
response = model.generate(**inputs, max_new_tokens=100)
response = tokenizer.batch_decode(response, skip_special_tokens=True)[0]
response = response[len(message[0]):].strip()
return response
# Gradio Interface
with gr.Blocks() as demo:
gr.Markdown("# Passage and Question Response Generator")
passage_input = gr.Textbox(label="Passage", placeholder="Enter the passage here", lines=5)
question_input = gr.Textbox(label="Question", placeholder="Enter the question here", lines=2)
output_box = gr.Textbox(label="Response", placeholder="Model's response will appear here")
submit_button = gr.Button("Generate Response")
submit_button.click(fn=generate_response, inputs=[passage_input, question_input], outputs=output_box)
# Run the app
if __name__ == "__main__":
demo.launch()