Spaces:
Running
on
Zero
Running
on
Zero
Upload 70 files
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- .gitattributes +1 -0
- custom_nodes/ComfyUI-CogVideoXWrapper/.gitattributes +2 -0
- custom_nodes/ComfyUI-CogVideoXWrapper/.github/FUNDING.yml +2 -0
- custom_nodes/ComfyUI-CogVideoXWrapper/.github/workflows/publish.yml +24 -0
- custom_nodes/ComfyUI-CogVideoXWrapper/.gitignore +11 -0
- custom_nodes/ComfyUI-CogVideoXWrapper/LICENSE +201 -0
- custom_nodes/ComfyUI-CogVideoXWrapper/__init__.py +7 -0
- custom_nodes/ComfyUI-CogVideoXWrapper/__pycache__/__init__.cpython-311.pyc +0 -0
- custom_nodes/ComfyUI-CogVideoXWrapper/__pycache__/__init__.cpython-312.pyc +0 -0
- custom_nodes/ComfyUI-CogVideoXWrapper/__pycache__/custom_cogvideox_transformer_3d.cpython-311.pyc +0 -0
- custom_nodes/ComfyUI-CogVideoXWrapper/__pycache__/custom_cogvideox_transformer_3d.cpython-312.pyc +0 -0
- custom_nodes/ComfyUI-CogVideoXWrapper/__pycache__/embeddings.cpython-311.pyc +0 -0
- custom_nodes/ComfyUI-CogVideoXWrapper/__pycache__/embeddings.cpython-312.pyc +0 -0
- custom_nodes/ComfyUI-CogVideoXWrapper/__pycache__/model_loading.cpython-311.pyc +0 -0
- custom_nodes/ComfyUI-CogVideoXWrapper/__pycache__/model_loading.cpython-312.pyc +0 -0
- custom_nodes/ComfyUI-CogVideoXWrapper/__pycache__/nodes.cpython-311.pyc +0 -0
- custom_nodes/ComfyUI-CogVideoXWrapper/__pycache__/nodes.cpython-312.pyc +0 -0
- custom_nodes/ComfyUI-CogVideoXWrapper/__pycache__/pipeline_cogvideox.cpython-311.pyc +0 -0
- custom_nodes/ComfyUI-CogVideoXWrapper/__pycache__/pipeline_cogvideox.cpython-312.pyc +0 -0
- custom_nodes/ComfyUI-CogVideoXWrapper/__pycache__/utils.cpython-311.pyc +0 -0
- custom_nodes/ComfyUI-CogVideoXWrapper/__pycache__/utils.cpython-312.pyc +0 -0
- custom_nodes/ComfyUI-CogVideoXWrapper/cogvideo_controlnet.py +220 -0
- custom_nodes/ComfyUI-CogVideoXWrapper/cogvideox_fun/utils.py +43 -0
- custom_nodes/ComfyUI-CogVideoXWrapper/configs/scheduler_config_2b.json +18 -0
- custom_nodes/ComfyUI-CogVideoXWrapper/configs/scheduler_config_5b.json +18 -0
- custom_nodes/ComfyUI-CogVideoXWrapper/configs/transformer_config_2b.json +26 -0
- custom_nodes/ComfyUI-CogVideoXWrapper/configs/transformer_config_5b.json +26 -0
- custom_nodes/ComfyUI-CogVideoXWrapper/configs/transformer_config_I2V_5b.json +27 -0
- custom_nodes/ComfyUI-CogVideoXWrapper/configs/vae_config.json +39 -0
- custom_nodes/ComfyUI-CogVideoXWrapper/context.py +184 -0
- custom_nodes/ComfyUI-CogVideoXWrapper/custom_cogvideox_transformer_3d.py +779 -0
- custom_nodes/ComfyUI-CogVideoXWrapper/embeddings.py +226 -0
- custom_nodes/ComfyUI-CogVideoXWrapper/enhance_a_video/__init__.py +0 -0
- custom_nodes/ComfyUI-CogVideoXWrapper/enhance_a_video/__pycache__/__init__.cpython-311.pyc +0 -0
- custom_nodes/ComfyUI-CogVideoXWrapper/enhance_a_video/__pycache__/__init__.cpython-312.pyc +0 -0
- custom_nodes/ComfyUI-CogVideoXWrapper/enhance_a_video/__pycache__/enhance.cpython-311.pyc +0 -0
- custom_nodes/ComfyUI-CogVideoXWrapper/enhance_a_video/__pycache__/enhance.cpython-312.pyc +0 -0
- custom_nodes/ComfyUI-CogVideoXWrapper/enhance_a_video/__pycache__/globals.cpython-311.pyc +0 -0
- custom_nodes/ComfyUI-CogVideoXWrapper/enhance_a_video/__pycache__/globals.cpython-312.pyc +0 -0
- custom_nodes/ComfyUI-CogVideoXWrapper/enhance_a_video/enhance.py +82 -0
- custom_nodes/ComfyUI-CogVideoXWrapper/enhance_a_video/globals.py +31 -0
- custom_nodes/ComfyUI-CogVideoXWrapper/example_workflows/cogvideox_1.0_5b_vid2vid_02.json +1061 -0
- custom_nodes/ComfyUI-CogVideoXWrapper/example_workflows/cogvideox_1_0_2b_controlnet_02.json +1003 -0
- custom_nodes/ComfyUI-CogVideoXWrapper/example_workflows/cogvideox_1_0_5b_I2V_02.json +688 -0
- custom_nodes/ComfyUI-CogVideoXWrapper/example_workflows/cogvideox_1_0_5b_I2V_Tora_02.json +0 -0
- custom_nodes/ComfyUI-CogVideoXWrapper/example_workflows/cogvideox_1_0_5b_I2V_noise_warp_01.json +1291 -0
- custom_nodes/ComfyUI-CogVideoXWrapper/example_workflows/cogvideox_1_0_5b_T2V_02.json +529 -0
- custom_nodes/ComfyUI-CogVideoXWrapper/example_workflows/cogvideox_1_0_5b_interpolation_02.json +864 -0
- custom_nodes/ComfyUI-CogVideoXWrapper/example_workflows/cogvideox_1_0_5b_vid2vid_02.json +1061 -0
- custom_nodes/ComfyUI-CogVideoXWrapper/example_workflows/cogvideox_1_5_5b_I2V_01.json +688 -0
.gitattributes
CHANGED
@@ -16,3 +16,4 @@ custom_nodes/ComfyUI-N-Nodes/libs/rifle/demo/I2_0.png filter=lfs diff=lfs merge=
|
|
16 |
custom_nodes/ComfyUI-N-Nodes/libs/rifle/demo/I2_1.png filter=lfs diff=lfs merge=lfs -text
|
17 |
custom_nodes/ComfyUI-N-Nodes/libs/rifle/demo/I2_slomo_clipped.gif filter=lfs diff=lfs merge=lfs -text
|
18 |
custom_nodes/ComfyUI-N-Nodes/libs/rifle/train_log/flownet.pkl filter=lfs diff=lfs merge=lfs -text
|
|
|
|
16 |
custom_nodes/ComfyUI-N-Nodes/libs/rifle/demo/I2_1.png filter=lfs diff=lfs merge=lfs -text
|
17 |
custom_nodes/ComfyUI-N-Nodes/libs/rifle/demo/I2_slomo_clipped.gif filter=lfs diff=lfs merge=lfs -text
|
18 |
custom_nodes/ComfyUI-N-Nodes/libs/rifle/train_log/flownet.pkl filter=lfs diff=lfs merge=lfs -text
|
19 |
+
custom_nodes/ComfyUI-CogVideoXWrapper/example_workflows/noise_warp_example_input_video.mp4 filter=lfs diff=lfs merge=lfs -text
|
custom_nodes/ComfyUI-CogVideoXWrapper/.gitattributes
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
# Auto detect text files and perform LF normalization
|
2 |
+
* text=auto
|
custom_nodes/ComfyUI-CogVideoXWrapper/.github/FUNDING.yml
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
github: [kijai]
|
2 |
+
custom: ["https://www.paypal.me/kijaidesign"]
|
custom_nodes/ComfyUI-CogVideoXWrapper/.github/workflows/publish.yml
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
name: Publish to Comfy registry
|
2 |
+
on:
|
3 |
+
workflow_dispatch:
|
4 |
+
push:
|
5 |
+
branches:
|
6 |
+
- main
|
7 |
+
- master
|
8 |
+
paths:
|
9 |
+
- "pyproject.toml"
|
10 |
+
|
11 |
+
jobs:
|
12 |
+
publish-node:
|
13 |
+
name: Publish Custom Node to registry
|
14 |
+
runs-on: ubuntu-latest
|
15 |
+
# if this is a forked repository. Skipping the workflow.
|
16 |
+
if: github.event.repository.fork == false
|
17 |
+
steps:
|
18 |
+
- name: Check out code
|
19 |
+
uses: actions/checkout@v4
|
20 |
+
- name: Publish Custom Node
|
21 |
+
uses: Comfy-Org/publish-node-action@main
|
22 |
+
with:
|
23 |
+
## Add your own personal access token to your Github Repository secrets and reference it here.
|
24 |
+
personal_access_token: ${{ secrets.REGISTRY_ACCESS_TOKEN }}
|
custom_nodes/ComfyUI-CogVideoXWrapper/.gitignore
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
output/
|
2 |
+
*__pycache__/
|
3 |
+
samples*/
|
4 |
+
runs/
|
5 |
+
checkpoints/
|
6 |
+
master_ip
|
7 |
+
logs/
|
8 |
+
*.DS_Store
|
9 |
+
.idea
|
10 |
+
*.pt
|
11 |
+
tools/
|
custom_nodes/ComfyUI-CogVideoXWrapper/LICENSE
ADDED
@@ -0,0 +1,201 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Apache License
|
2 |
+
Version 2.0, January 2004
|
3 |
+
http://www.apache.org/licenses/
|
4 |
+
|
5 |
+
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
|
6 |
+
|
7 |
+
1. Definitions.
|
8 |
+
|
9 |
+
"License" shall mean the terms and conditions for use, reproduction,
|
10 |
+
and distribution as defined by Sections 1 through 9 of this document.
|
11 |
+
|
12 |
+
"Licensor" shall mean the copyright owner or entity authorized by
|
13 |
+
the copyright owner that is granting the License.
|
14 |
+
|
15 |
+
"Legal Entity" shall mean the union of the acting entity and all
|
16 |
+
other entities that control, are controlled by, or are under common
|
17 |
+
control with that entity. For the purposes of this definition,
|
18 |
+
"control" means (i) the power, direct or indirect, to cause the
|
19 |
+
direction or management of such entity, whether by contract or
|
20 |
+
otherwise, or (ii) ownership of fifty percent (50%) or more of the
|
21 |
+
outstanding shares, or (iii) beneficial ownership of such entity.
|
22 |
+
|
23 |
+
"You" (or "Your") shall mean an individual or Legal Entity
|
24 |
+
exercising permissions granted by this License.
|
25 |
+
|
26 |
+
"Source" form shall mean the preferred form for making modifications,
|
27 |
+
including but not limited to software source code, documentation
|
28 |
+
source, and configuration files.
|
29 |
+
|
30 |
+
"Object" form shall mean any form resulting from mechanical
|
31 |
+
transformation or translation of a Source form, including but
|
32 |
+
not limited to compiled object code, generated documentation,
|
33 |
+
and conversions to other media types.
|
34 |
+
|
35 |
+
"Work" shall mean the work of authorship, whether in Source or
|
36 |
+
Object form, made available under the License, as indicated by a
|
37 |
+
copyright notice that is included in or attached to the work
|
38 |
+
(an example is provided in the Appendix below).
|
39 |
+
|
40 |
+
"Derivative Works" shall mean any work, whether in Source or Object
|
41 |
+
form, that is based on (or derived from) the Work and for which the
|
42 |
+
editorial revisions, annotations, elaborations, or other modifications
|
43 |
+
represent, as a whole, an original work of authorship. For the purposes
|
44 |
+
of this License, Derivative Works shall not include works that remain
|
45 |
+
separable from, or merely link (or bind by name) to the interfaces of,
|
46 |
+
the Work and Derivative Works thereof.
|
47 |
+
|
48 |
+
"Contribution" shall mean any work of authorship, including
|
49 |
+
the original version of the Work and any modifications or additions
|
50 |
+
to that Work or Derivative Works thereof, that is intentionally
|
51 |
+
submitted to Licensor for inclusion in the Work by the copyright owner
|
52 |
+
or by an individual or Legal Entity authorized to submit on behalf of
|
53 |
+
the copyright owner. For the purposes of this definition, "submitted"
|
54 |
+
means any form of electronic, verbal, or written communication sent
|
55 |
+
to the Licensor or its representatives, including but not limited to
|
56 |
+
communication on electronic mailing lists, source code control systems,
|
57 |
+
and issue tracking systems that are managed by, or on behalf of, the
|
58 |
+
Licensor for the purpose of discussing and improving the Work, but
|
59 |
+
excluding communication that is conspicuously marked or otherwise
|
60 |
+
designated in writing by the copyright owner as "Not a Contribution."
|
61 |
+
|
62 |
+
"Contributor" shall mean Licensor and any individual or Legal Entity
|
63 |
+
on behalf of whom a Contribution has been received by Licensor and
|
64 |
+
subsequently incorporated within the Work.
|
65 |
+
|
66 |
+
2. Grant of Copyright License. Subject to the terms and conditions of
|
67 |
+
this License, each Contributor hereby grants to You a perpetual,
|
68 |
+
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
69 |
+
copyright license to reproduce, prepare Derivative Works of,
|
70 |
+
publicly display, publicly perform, sublicense, and distribute the
|
71 |
+
Work and such Derivative Works in Source or Object form.
|
72 |
+
|
73 |
+
3. Grant of Patent License. Subject to the terms and conditions of
|
74 |
+
this License, each Contributor hereby grants to You a perpetual,
|
75 |
+
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
76 |
+
(except as stated in this section) patent license to make, have made,
|
77 |
+
use, offer to sell, sell, import, and otherwise transfer the Work,
|
78 |
+
where such license applies only to those patent claims licensable
|
79 |
+
by such Contributor that are necessarily infringed by their
|
80 |
+
Contribution(s) alone or by combination of their Contribution(s)
|
81 |
+
with the Work to which such Contribution(s) was submitted. If You
|
82 |
+
institute patent litigation against any entity (including a
|
83 |
+
cross-claim or counterclaim in a lawsuit) alleging that the Work
|
84 |
+
or a Contribution incorporated within the Work constitutes direct
|
85 |
+
or contributory patent infringement, then any patent licenses
|
86 |
+
granted to You under this License for that Work shall terminate
|
87 |
+
as of the date such litigation is filed.
|
88 |
+
|
89 |
+
4. Redistribution. You may reproduce and distribute copies of the
|
90 |
+
Work or Derivative Works thereof in any medium, with or without
|
91 |
+
modifications, and in Source or Object form, provided that You
|
92 |
+
meet the following conditions:
|
93 |
+
|
94 |
+
(a) You must give any other recipients of the Work or
|
95 |
+
Derivative Works a copy of this License; and
|
96 |
+
|
97 |
+
(b) You must cause any modified files to carry prominent notices
|
98 |
+
stating that You changed the files; and
|
99 |
+
|
100 |
+
(c) You must retain, in the Source form of any Derivative Works
|
101 |
+
that You distribute, all copyright, patent, trademark, and
|
102 |
+
attribution notices from the Source form of the Work,
|
103 |
+
excluding those notices that do not pertain to any part of
|
104 |
+
the Derivative Works; and
|
105 |
+
|
106 |
+
(d) If the Work includes a "NOTICE" text file as part of its
|
107 |
+
distribution, then any Derivative Works that You distribute must
|
108 |
+
include a readable copy of the attribution notices contained
|
109 |
+
within such NOTICE file, excluding those notices that do not
|
110 |
+
pertain to any part of the Derivative Works, in at least one
|
111 |
+
of the following places: within a NOTICE text file distributed
|
112 |
+
as part of the Derivative Works; within the Source form or
|
113 |
+
documentation, if provided along with the Derivative Works; or,
|
114 |
+
within a display generated by the Derivative Works, if and
|
115 |
+
wherever such third-party notices normally appear. The contents
|
116 |
+
of the NOTICE file are for informational purposes only and
|
117 |
+
do not modify the License. You may add Your own attribution
|
118 |
+
notices within Derivative Works that You distribute, alongside
|
119 |
+
or as an addendum to the NOTICE text from the Work, provided
|
120 |
+
that such additional attribution notices cannot be construed
|
121 |
+
as modifying the License.
|
122 |
+
|
123 |
+
You may add Your own copyright statement to Your modifications and
|
124 |
+
may provide additional or different license terms and conditions
|
125 |
+
for use, reproduction, or distribution of Your modifications, or
|
126 |
+
for any such Derivative Works as a whole, provided Your use,
|
127 |
+
reproduction, and distribution of the Work otherwise complies with
|
128 |
+
the conditions stated in this License.
|
129 |
+
|
130 |
+
5. Submission of Contributions. Unless You explicitly state otherwise,
|
131 |
+
any Contribution intentionally submitted for inclusion in the Work
|
132 |
+
by You to the Licensor shall be under the terms and conditions of
|
133 |
+
this License, without any additional terms or conditions.
|
134 |
+
Notwithstanding the above, nothing herein shall supersede or modify
|
135 |
+
the terms of any separate license agreement you may have executed
|
136 |
+
with Licensor regarding such Contributions.
|
137 |
+
|
138 |
+
6. Trademarks. This License does not grant permission to use the trade
|
139 |
+
names, trademarks, service marks, or product names of the Licensor,
|
140 |
+
except as required for reasonable and customary use in describing the
|
141 |
+
origin of the Work and reproducing the content of the NOTICE file.
|
142 |
+
|
143 |
+
7. Disclaimer of Warranty. Unless required by applicable law or
|
144 |
+
agreed to in writing, Licensor provides the Work (and each
|
145 |
+
Contributor provides its Contributions) on an "AS IS" BASIS,
|
146 |
+
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
|
147 |
+
implied, including, without limitation, any warranties or conditions
|
148 |
+
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
|
149 |
+
PARTICULAR PURPOSE. You are solely responsible for determining the
|
150 |
+
appropriateness of using or redistributing the Work and assume any
|
151 |
+
risks associated with Your exercise of permissions under this License.
|
152 |
+
|
153 |
+
8. Limitation of Liability. In no event and under no legal theory,
|
154 |
+
whether in tort (including negligence), contract, or otherwise,
|
155 |
+
unless required by applicable law (such as deliberate and grossly
|
156 |
+
negligent acts) or agreed to in writing, shall any Contributor be
|
157 |
+
liable to You for damages, including any direct, indirect, special,
|
158 |
+
incidental, or consequential damages of any character arising as a
|
159 |
+
result of this License or out of the use or inability to use the
|
160 |
+
Work (including but not limited to damages for loss of goodwill,
|
161 |
+
work stoppage, computer failure or malfunction, or any and all
|
162 |
+
other commercial damages or losses), even if such Contributor
|
163 |
+
has been advised of the possibility of such damages.
|
164 |
+
|
165 |
+
9. Accepting Warranty or Additional Liability. While redistributing
|
166 |
+
the Work or Derivative Works thereof, You may choose to offer,
|
167 |
+
and charge a fee for, acceptance of support, warranty, indemnity,
|
168 |
+
or other liability obligations and/or rights consistent with this
|
169 |
+
License. However, in accepting such obligations, You may act only
|
170 |
+
on Your own behalf and on Your sole responsibility, not on behalf
|
171 |
+
of any other Contributor, and only if You agree to indemnify,
|
172 |
+
defend, and hold each Contributor harmless for any liability
|
173 |
+
incurred by, or claims asserted against, such Contributor by reason
|
174 |
+
of your accepting any such warranty or additional liability.
|
175 |
+
|
176 |
+
END OF TERMS AND CONDITIONS
|
177 |
+
|
178 |
+
APPENDIX: How to apply the Apache License to your work.
|
179 |
+
|
180 |
+
To apply the Apache License to your work, attach the following
|
181 |
+
boilerplate notice, with the fields enclosed by brackets "[]"
|
182 |
+
replaced with your own identifying information. (Don't include
|
183 |
+
the brackets!) The text should be enclosed in the appropriate
|
184 |
+
comment syntax for the file format. We also recommend that a
|
185 |
+
file or class name and description of purpose be included on the
|
186 |
+
same "printed page" as the copyright notice for easier
|
187 |
+
identification within third-party archives.
|
188 |
+
|
189 |
+
Copyright [yyyy] [name of copyright owner]
|
190 |
+
|
191 |
+
Licensed under the Apache License, Version 2.0 (the "License");
|
192 |
+
you may not use this file except in compliance with the License.
|
193 |
+
You may obtain a copy of the License at
|
194 |
+
|
195 |
+
http://www.apache.org/licenses/LICENSE-2.0
|
196 |
+
|
197 |
+
Unless required by applicable law or agreed to in writing, software
|
198 |
+
distributed under the License is distributed on an "AS IS" BASIS,
|
199 |
+
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
200 |
+
See the License for the specific language governing permissions and
|
201 |
+
limitations under the License.
|
custom_nodes/ComfyUI-CogVideoXWrapper/__init__.py
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from .nodes import NODE_CLASS_MAPPINGS as NODES_CLASS, NODE_DISPLAY_NAME_MAPPINGS as NODES_DISPLAY
|
2 |
+
from .model_loading import NODE_CLASS_MAPPINGS as MODEL_CLASS, NODE_DISPLAY_NAME_MAPPINGS as MODEL_DISPLAY
|
3 |
+
|
4 |
+
NODE_CLASS_MAPPINGS = {**NODES_CLASS, **MODEL_CLASS}
|
5 |
+
NODE_DISPLAY_NAME_MAPPINGS = {**NODES_DISPLAY, **MODEL_DISPLAY}
|
6 |
+
|
7 |
+
__all__ = ["NODE_CLASS_MAPPINGS", "NODE_DISPLAY_NAME_MAPPINGS"]
|
custom_nodes/ComfyUI-CogVideoXWrapper/__pycache__/__init__.cpython-311.pyc
ADDED
Binary file (498 Bytes). View file
|
|
custom_nodes/ComfyUI-CogVideoXWrapper/__pycache__/__init__.cpython-312.pyc
ADDED
Binary file (508 Bytes). View file
|
|
custom_nodes/ComfyUI-CogVideoXWrapper/__pycache__/custom_cogvideox_transformer_3d.cpython-311.pyc
ADDED
Binary file (37.6 kB). View file
|
|
custom_nodes/ComfyUI-CogVideoXWrapper/__pycache__/custom_cogvideox_transformer_3d.cpython-312.pyc
ADDED
Binary file (34.9 kB). View file
|
|
custom_nodes/ComfyUI-CogVideoXWrapper/__pycache__/embeddings.cpython-311.pyc
ADDED
Binary file (11.1 kB). View file
|
|
custom_nodes/ComfyUI-CogVideoXWrapper/__pycache__/embeddings.cpython-312.pyc
ADDED
Binary file (10.6 kB). View file
|
|
custom_nodes/ComfyUI-CogVideoXWrapper/__pycache__/model_loading.cpython-311.pyc
ADDED
Binary file (52.7 kB). View file
|
|
custom_nodes/ComfyUI-CogVideoXWrapper/__pycache__/model_loading.cpython-312.pyc
ADDED
Binary file (47 kB). View file
|
|
custom_nodes/ComfyUI-CogVideoXWrapper/__pycache__/nodes.cpython-311.pyc
ADDED
Binary file (53.1 kB). View file
|
|
custom_nodes/ComfyUI-CogVideoXWrapper/__pycache__/nodes.cpython-312.pyc
ADDED
Binary file (47.6 kB). View file
|
|
custom_nodes/ComfyUI-CogVideoXWrapper/__pycache__/pipeline_cogvideox.cpython-311.pyc
ADDED
Binary file (43.1 kB). View file
|
|
custom_nodes/ComfyUI-CogVideoXWrapper/__pycache__/pipeline_cogvideox.cpython-312.pyc
ADDED
Binary file (40.9 kB). View file
|
|
custom_nodes/ComfyUI-CogVideoXWrapper/__pycache__/utils.cpython-311.pyc
ADDED
Binary file (2.83 kB). View file
|
|
custom_nodes/ComfyUI-CogVideoXWrapper/__pycache__/utils.cpython-312.pyc
ADDED
Binary file (2.56 kB). View file
|
|
custom_nodes/ComfyUI-CogVideoXWrapper/cogvideo_controlnet.py
ADDED
@@ -0,0 +1,220 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# https://github.com/TheDenk/cogvideox-controlnet/blob/main/cogvideo_controlnet.py
|
2 |
+
from typing import Any, Dict, Optional, Tuple, Union
|
3 |
+
|
4 |
+
import torch
|
5 |
+
from torch import nn
|
6 |
+
from einops import rearrange
|
7 |
+
import torch.nn.functional as F
|
8 |
+
from .custom_cogvideox_transformer_3d import Transformer2DModelOutput, CogVideoXBlock
|
9 |
+
from diffusers.utils import is_torch_version
|
10 |
+
from diffusers.loaders import PeftAdapterMixin
|
11 |
+
from diffusers.models.embeddings import CogVideoXPatchEmbed, TimestepEmbedding, Timesteps
|
12 |
+
from diffusers.models.modeling_utils import ModelMixin
|
13 |
+
from diffusers.configuration_utils import ConfigMixin, register_to_config
|
14 |
+
|
15 |
+
|
16 |
+
class CogVideoXControlnet(ModelMixin, ConfigMixin, PeftAdapterMixin):
|
17 |
+
_supports_gradient_checkpointing = True
|
18 |
+
|
19 |
+
@register_to_config
|
20 |
+
def __init__(
|
21 |
+
self,
|
22 |
+
num_attention_heads: int = 30,
|
23 |
+
attention_head_dim: int = 64,
|
24 |
+
vae_channels: int = 16,
|
25 |
+
in_channels: int = 3,
|
26 |
+
downscale_coef: int = 8,
|
27 |
+
flip_sin_to_cos: bool = True,
|
28 |
+
freq_shift: int = 0,
|
29 |
+
time_embed_dim: int = 512,
|
30 |
+
num_layers: int = 8,
|
31 |
+
dropout: float = 0.0,
|
32 |
+
attention_bias: bool = True,
|
33 |
+
sample_width: int = 90,
|
34 |
+
sample_height: int = 60,
|
35 |
+
sample_frames: int = 49,
|
36 |
+
patch_size: int = 2,
|
37 |
+
temporal_compression_ratio: int = 4,
|
38 |
+
max_text_seq_length: int = 226,
|
39 |
+
activation_fn: str = "gelu-approximate",
|
40 |
+
timestep_activation_fn: str = "silu",
|
41 |
+
norm_elementwise_affine: bool = True,
|
42 |
+
norm_eps: float = 1e-5,
|
43 |
+
spatial_interpolation_scale: float = 1.875,
|
44 |
+
temporal_interpolation_scale: float = 1.0,
|
45 |
+
use_rotary_positional_embeddings: bool = False,
|
46 |
+
use_learned_positional_embeddings: bool = False,
|
47 |
+
out_proj_dim = None,
|
48 |
+
):
|
49 |
+
super().__init__()
|
50 |
+
inner_dim = num_attention_heads * attention_head_dim
|
51 |
+
|
52 |
+
if not use_rotary_positional_embeddings and use_learned_positional_embeddings:
|
53 |
+
raise ValueError(
|
54 |
+
"There are no CogVideoX checkpoints available with disable rotary embeddings and learned positional "
|
55 |
+
"embeddings. If you're using a custom model and/or believe this should be supported, please open an "
|
56 |
+
"issue at https://github.com/huggingface/diffusers/issues."
|
57 |
+
)
|
58 |
+
|
59 |
+
start_channels = in_channels * (downscale_coef ** 2)
|
60 |
+
input_channels = [start_channels, start_channels // 2, start_channels // 4]
|
61 |
+
self.unshuffle = nn.PixelUnshuffle(downscale_coef)
|
62 |
+
|
63 |
+
self.controlnet_encode_first = nn.Sequential(
|
64 |
+
nn.Conv2d(input_channels[0], input_channels[1], kernel_size=1, stride=1, padding=0),
|
65 |
+
nn.GroupNorm(2, input_channels[1]),
|
66 |
+
nn.ReLU(),
|
67 |
+
)
|
68 |
+
|
69 |
+
self.controlnet_encode_second = nn.Sequential(
|
70 |
+
nn.Conv2d(input_channels[1], input_channels[2], kernel_size=1, stride=1, padding=0),
|
71 |
+
nn.GroupNorm(2, input_channels[2]),
|
72 |
+
nn.ReLU(),
|
73 |
+
)
|
74 |
+
|
75 |
+
# 1. Patch embedding
|
76 |
+
self.patch_embed = CogVideoXPatchEmbed(
|
77 |
+
patch_size=patch_size,
|
78 |
+
in_channels=vae_channels + input_channels[2],
|
79 |
+
embed_dim=inner_dim,
|
80 |
+
bias=True,
|
81 |
+
sample_width=sample_width,
|
82 |
+
sample_height=sample_height,
|
83 |
+
sample_frames=sample_frames,
|
84 |
+
temporal_compression_ratio=temporal_compression_ratio,
|
85 |
+
spatial_interpolation_scale=spatial_interpolation_scale,
|
86 |
+
temporal_interpolation_scale=temporal_interpolation_scale,
|
87 |
+
use_positional_embeddings=not use_rotary_positional_embeddings,
|
88 |
+
use_learned_positional_embeddings=use_learned_positional_embeddings,
|
89 |
+
)
|
90 |
+
|
91 |
+
self.embedding_dropout = nn.Dropout(dropout)
|
92 |
+
|
93 |
+
# 2. Time embeddings
|
94 |
+
self.time_proj = Timesteps(inner_dim, flip_sin_to_cos, freq_shift)
|
95 |
+
self.time_embedding = TimestepEmbedding(inner_dim, time_embed_dim, timestep_activation_fn)
|
96 |
+
|
97 |
+
# 3. Define spatio-temporal transformers blocks
|
98 |
+
self.transformer_blocks = nn.ModuleList(
|
99 |
+
[
|
100 |
+
CogVideoXBlock(
|
101 |
+
dim=inner_dim,
|
102 |
+
num_attention_heads=num_attention_heads,
|
103 |
+
attention_head_dim=attention_head_dim,
|
104 |
+
time_embed_dim=time_embed_dim,
|
105 |
+
dropout=dropout,
|
106 |
+
activation_fn=activation_fn,
|
107 |
+
attention_bias=attention_bias,
|
108 |
+
norm_elementwise_affine=norm_elementwise_affine,
|
109 |
+
norm_eps=norm_eps,
|
110 |
+
)
|
111 |
+
for _ in range(num_layers)
|
112 |
+
]
|
113 |
+
)
|
114 |
+
|
115 |
+
self.out_projectors = None
|
116 |
+
if out_proj_dim is not None:
|
117 |
+
self.out_projectors = nn.ModuleList(
|
118 |
+
[nn.Linear(inner_dim, out_proj_dim) for _ in range(num_layers)]
|
119 |
+
)
|
120 |
+
|
121 |
+
self.gradient_checkpointing = False
|
122 |
+
|
123 |
+
def _set_gradient_checkpointing(self, module, value=False):
|
124 |
+
self.gradient_checkpointing = value
|
125 |
+
|
126 |
+
def compress_time(self, x, num_frames):
|
127 |
+
x = rearrange(x, '(b f) c h w -> b f c h w', f=num_frames)
|
128 |
+
batch_size, frames, channels, height, width = x.shape
|
129 |
+
x = rearrange(x, 'b f c h w -> (b h w) c f')
|
130 |
+
|
131 |
+
if x.shape[-1] % 2 == 1:
|
132 |
+
x_first, x_rest = x[..., 0], x[..., 1:]
|
133 |
+
if x_rest.shape[-1] > 0:
|
134 |
+
x_rest = F.avg_pool1d(x_rest, kernel_size=2, stride=2)
|
135 |
+
|
136 |
+
x = torch.cat([x_first[..., None], x_rest], dim=-1)
|
137 |
+
else:
|
138 |
+
x = F.avg_pool1d(x, kernel_size=2, stride=2)
|
139 |
+
x = rearrange(x, '(b h w) c f -> (b f) c h w', b=batch_size, h=height, w=width)
|
140 |
+
return x
|
141 |
+
|
142 |
+
def forward(
|
143 |
+
self,
|
144 |
+
hidden_states: torch.Tensor,
|
145 |
+
encoder_hidden_states: torch.Tensor,
|
146 |
+
controlnet_states: torch.Tensor,
|
147 |
+
timestep: Union[int, float, torch.LongTensor],
|
148 |
+
image_rotary_emb: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
|
149 |
+
timestep_cond: Optional[torch.Tensor] = None,
|
150 |
+
return_dict: bool = True,
|
151 |
+
):
|
152 |
+
batch_size, num_frames, channels, height, width = controlnet_states.shape
|
153 |
+
# 0. Controlnet encoder
|
154 |
+
controlnet_states = rearrange(controlnet_states, 'b f c h w -> (b f) c h w')
|
155 |
+
controlnet_states = self.unshuffle(controlnet_states)
|
156 |
+
controlnet_states = self.controlnet_encode_first(controlnet_states)
|
157 |
+
controlnet_states = self.compress_time(controlnet_states, num_frames=num_frames)
|
158 |
+
num_frames = controlnet_states.shape[0] // batch_size
|
159 |
+
|
160 |
+
controlnet_states = self.controlnet_encode_second(controlnet_states)
|
161 |
+
controlnet_states = self.compress_time(controlnet_states, num_frames=num_frames)
|
162 |
+
controlnet_states = rearrange(controlnet_states, '(b f) c h w -> b f c h w', b=batch_size)
|
163 |
+
|
164 |
+
hidden_states = torch.cat([hidden_states, controlnet_states], dim=2)
|
165 |
+
# controlnet_states = self.controlnext_encoder(controlnet_states, timestep=timestep)
|
166 |
+
# 1. Time embedding
|
167 |
+
timesteps = timestep
|
168 |
+
t_emb = self.time_proj(timesteps)
|
169 |
+
|
170 |
+
# timesteps does not contain any weights and will always return f32 tensors
|
171 |
+
# but time_embedding might actually be running in fp16. so we need to cast here.
|
172 |
+
# there might be better ways to encapsulate this.
|
173 |
+
t_emb = t_emb.to(dtype=hidden_states.dtype)
|
174 |
+
emb = self.time_embedding(t_emb, timestep_cond)
|
175 |
+
|
176 |
+
hidden_states = self.patch_embed(encoder_hidden_states, hidden_states)
|
177 |
+
hidden_states = self.embedding_dropout(hidden_states)
|
178 |
+
|
179 |
+
|
180 |
+
text_seq_length = encoder_hidden_states.shape[1]
|
181 |
+
encoder_hidden_states = hidden_states[:, :text_seq_length]
|
182 |
+
hidden_states = hidden_states[:, text_seq_length:]
|
183 |
+
|
184 |
+
|
185 |
+
controlnet_hidden_states = ()
|
186 |
+
# 3. Transformer blocks
|
187 |
+
for i, block in enumerate(self.transformer_blocks):
|
188 |
+
if self.training and self.gradient_checkpointing:
|
189 |
+
|
190 |
+
def create_custom_forward(module):
|
191 |
+
def custom_forward(*inputs):
|
192 |
+
return module(*inputs)
|
193 |
+
|
194 |
+
return custom_forward
|
195 |
+
|
196 |
+
ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
|
197 |
+
hidden_states, encoder_hidden_states = torch.utils.checkpoint.checkpoint(
|
198 |
+
create_custom_forward(block),
|
199 |
+
hidden_states,
|
200 |
+
encoder_hidden_states,
|
201 |
+
emb,
|
202 |
+
image_rotary_emb,
|
203 |
+
**ckpt_kwargs,
|
204 |
+
)
|
205 |
+
else:
|
206 |
+
hidden_states, encoder_hidden_states = block(
|
207 |
+
hidden_states=hidden_states,
|
208 |
+
encoder_hidden_states=encoder_hidden_states,
|
209 |
+
temb=emb,
|
210 |
+
image_rotary_emb=image_rotary_emb,
|
211 |
+
)
|
212 |
+
|
213 |
+
if self.out_projectors is not None:
|
214 |
+
controlnet_hidden_states += (self.out_projectors[i](hidden_states),)
|
215 |
+
else:
|
216 |
+
controlnet_hidden_states += (hidden_states,)
|
217 |
+
|
218 |
+
if not return_dict:
|
219 |
+
return (controlnet_hidden_states,)
|
220 |
+
return Transformer2DModelOutput(sample=controlnet_hidden_states)
|
custom_nodes/ComfyUI-CogVideoXWrapper/cogvideox_fun/utils.py
ADDED
@@ -0,0 +1,43 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
from PIL import Image
|
3 |
+
|
4 |
+
ASPECT_RATIO_512 = {
|
5 |
+
'0.25': [256.0, 1024.0], '0.26': [256.0, 992.0], '0.27': [256.0, 960.0], '0.28': [256.0, 928.0],
|
6 |
+
'0.32': [288.0, 896.0], '0.33': [288.0, 864.0], '0.35': [288.0, 832.0], '0.4': [320.0, 800.0],
|
7 |
+
'0.42': [320.0, 768.0], '0.48': [352.0, 736.0], '0.5': [352.0, 704.0], '0.52': [352.0, 672.0],
|
8 |
+
'0.57': [384.0, 672.0], '0.6': [384.0, 640.0], '0.68': [416.0, 608.0], '0.72': [416.0, 576.0],
|
9 |
+
'0.78': [448.0, 576.0], '0.82': [448.0, 544.0], '0.88': [480.0, 544.0], '0.94': [480.0, 512.0],
|
10 |
+
'1.0': [512.0, 512.0], '1.07': [512.0, 480.0], '1.13': [544.0, 480.0], '1.21': [544.0, 448.0],
|
11 |
+
'1.29': [576.0, 448.0], '1.38': [576.0, 416.0], '1.46': [608.0, 416.0], '1.67': [640.0, 384.0],
|
12 |
+
'1.75': [672.0, 384.0], '2.0': [704.0, 352.0], '2.09': [736.0, 352.0], '2.4': [768.0, 320.0],
|
13 |
+
'2.5': [800.0, 320.0], '2.89': [832.0, 288.0], '3.0': [864.0, 288.0], '3.11': [896.0, 288.0],
|
14 |
+
'3.62': [928.0, 256.0], '3.75': [960.0, 256.0], '3.88': [992.0, 256.0], '4.0': [1024.0, 256.0]
|
15 |
+
}
|
16 |
+
ASPECT_RATIO_RANDOM_CROP_512 = {
|
17 |
+
'0.42': [320.0, 768.0], '0.5': [352.0, 704.0],
|
18 |
+
'0.57': [384.0, 672.0], '0.68': [416.0, 608.0], '0.78': [448.0, 576.0], '0.88': [480.0, 544.0],
|
19 |
+
'0.94': [480.0, 512.0], '1.0': [512.0, 512.0], '1.07': [512.0, 480.0],
|
20 |
+
'1.13': [544.0, 480.0], '1.29': [576.0, 448.0], '1.46': [608.0, 416.0], '1.75': [672.0, 384.0],
|
21 |
+
'2.0': [704.0, 352.0], '2.4': [768.0, 320.0]
|
22 |
+
}
|
23 |
+
ASPECT_RATIO_RANDOM_CROP_PROB = [
|
24 |
+
1, 2,
|
25 |
+
4, 4, 4, 4,
|
26 |
+
8, 8, 8,
|
27 |
+
4, 4, 4, 4,
|
28 |
+
2, 1
|
29 |
+
]
|
30 |
+
ASPECT_RATIO_RANDOM_CROP_PROB = np.array(ASPECT_RATIO_RANDOM_CROP_PROB) / sum(ASPECT_RATIO_RANDOM_CROP_PROB)
|
31 |
+
|
32 |
+
def get_closest_ratio(height: float, width: float, ratios: dict = ASPECT_RATIO_512):
|
33 |
+
aspect_ratio = height / width
|
34 |
+
closest_ratio = min(ratios.keys(), key=lambda ratio: abs(float(ratio) - aspect_ratio))
|
35 |
+
return ratios[closest_ratio], float(closest_ratio)
|
36 |
+
|
37 |
+
def get_width_and_height_from_image_and_base_resolution(image, base_resolution):
|
38 |
+
target_pixels = int(base_resolution) * int(base_resolution)
|
39 |
+
original_width, original_height = Image.open(image).size
|
40 |
+
ratio = (target_pixels / (original_width * original_height)) ** 0.5
|
41 |
+
width_slider = round(original_width * ratio)
|
42 |
+
height_slider = round(original_height * ratio)
|
43 |
+
return height_slider, width_slider
|
custom_nodes/ComfyUI-CogVideoXWrapper/configs/scheduler_config_2b.json
ADDED
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_class_name": "CogVideoXDDIMScheduler",
|
3 |
+
"_diffusers_version": "0.30.0.dev0",
|
4 |
+
"beta_end": 0.012,
|
5 |
+
"beta_schedule": "scaled_linear",
|
6 |
+
"beta_start": 0.00085,
|
7 |
+
"clip_sample": false,
|
8 |
+
"clip_sample_range": 1.0,
|
9 |
+
"num_train_timesteps": 1000,
|
10 |
+
"prediction_type": "v_prediction",
|
11 |
+
"rescale_betas_zero_snr": true,
|
12 |
+
"sample_max_value": 1.0,
|
13 |
+
"set_alpha_to_one": true,
|
14 |
+
"snr_shift_scale": 3.0,
|
15 |
+
"steps_offset": 0,
|
16 |
+
"timestep_spacing": "trailing",
|
17 |
+
"trained_betas": null
|
18 |
+
}
|
custom_nodes/ComfyUI-CogVideoXWrapper/configs/scheduler_config_5b.json
ADDED
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_class_name": "CogVideoXDDIMScheduler",
|
3 |
+
"_diffusers_version": "0.31.0.dev0",
|
4 |
+
"beta_end": 0.012,
|
5 |
+
"beta_schedule": "scaled_linear",
|
6 |
+
"beta_start": 0.00085,
|
7 |
+
"clip_sample": false,
|
8 |
+
"clip_sample_range": 1.0,
|
9 |
+
"num_train_timesteps": 1000,
|
10 |
+
"prediction_type": "v_prediction",
|
11 |
+
"rescale_betas_zero_snr": true,
|
12 |
+
"sample_max_value": 1.0,
|
13 |
+
"set_alpha_to_one": true,
|
14 |
+
"snr_shift_scale": 1.0,
|
15 |
+
"steps_offset": 0,
|
16 |
+
"timestep_spacing": "trailing",
|
17 |
+
"trained_betas": null
|
18 |
+
}
|
custom_nodes/ComfyUI-CogVideoXWrapper/configs/transformer_config_2b.json
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"activation_fn": "gelu-approximate",
|
3 |
+
"attention_bias": true,
|
4 |
+
"attention_head_dim": 64,
|
5 |
+
"dropout": 0.0,
|
6 |
+
"flip_sin_to_cos": true,
|
7 |
+
"freq_shift": 0,
|
8 |
+
"in_channels": 16,
|
9 |
+
"max_text_seq_length": 226,
|
10 |
+
"norm_elementwise_affine": true,
|
11 |
+
"norm_eps": 1e-05,
|
12 |
+
"num_attention_heads": 30,
|
13 |
+
"num_layers": 30,
|
14 |
+
"out_channels": 16,
|
15 |
+
"patch_size": 2,
|
16 |
+
"sample_frames": 49,
|
17 |
+
"sample_height": 60,
|
18 |
+
"sample_width": 90,
|
19 |
+
"spatial_interpolation_scale": 1.875,
|
20 |
+
"temporal_compression_ratio": 4,
|
21 |
+
"temporal_interpolation_scale": 1.0,
|
22 |
+
"text_embed_dim": 4096,
|
23 |
+
"time_embed_dim": 512,
|
24 |
+
"timestep_activation_fn": "silu",
|
25 |
+
"use_rotary_positional_embeddings": false
|
26 |
+
}
|
custom_nodes/ComfyUI-CogVideoXWrapper/configs/transformer_config_5b.json
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"activation_fn": "gelu-approximate",
|
3 |
+
"attention_bias": true,
|
4 |
+
"attention_head_dim": 64,
|
5 |
+
"dropout": 0.0,
|
6 |
+
"flip_sin_to_cos": true,
|
7 |
+
"freq_shift": 0,
|
8 |
+
"in_channels": 16,
|
9 |
+
"max_text_seq_length": 226,
|
10 |
+
"norm_elementwise_affine": true,
|
11 |
+
"norm_eps": 1e-05,
|
12 |
+
"num_attention_heads": 48,
|
13 |
+
"num_layers": 42,
|
14 |
+
"out_channels": 16,
|
15 |
+
"patch_size": 2,
|
16 |
+
"sample_frames": 49,
|
17 |
+
"sample_height": 60,
|
18 |
+
"sample_width": 90,
|
19 |
+
"spatial_interpolation_scale": 1.875,
|
20 |
+
"temporal_compression_ratio": 4,
|
21 |
+
"temporal_interpolation_scale": 1.0,
|
22 |
+
"text_embed_dim": 4096,
|
23 |
+
"time_embed_dim": 512,
|
24 |
+
"timestep_activation_fn": "silu",
|
25 |
+
"use_rotary_positional_embeddings": true
|
26 |
+
}
|
custom_nodes/ComfyUI-CogVideoXWrapper/configs/transformer_config_I2V_5b.json
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"activation_fn": "gelu-approximate",
|
3 |
+
"attention_bias": true,
|
4 |
+
"attention_head_dim": 64,
|
5 |
+
"dropout": 0.0,
|
6 |
+
"flip_sin_to_cos": true,
|
7 |
+
"freq_shift": 0,
|
8 |
+
"in_channels": 32,
|
9 |
+
"max_text_seq_length": 226,
|
10 |
+
"norm_elementwise_affine": true,
|
11 |
+
"norm_eps": 1e-05,
|
12 |
+
"num_attention_heads": 48,
|
13 |
+
"num_layers": 42,
|
14 |
+
"out_channels": 16,
|
15 |
+
"patch_size": 2,
|
16 |
+
"sample_frames": 49,
|
17 |
+
"sample_height": 60,
|
18 |
+
"sample_width": 90,
|
19 |
+
"spatial_interpolation_scale": 1.875,
|
20 |
+
"temporal_compression_ratio": 4,
|
21 |
+
"temporal_interpolation_scale": 1.0,
|
22 |
+
"text_embed_dim": 4096,
|
23 |
+
"time_embed_dim": 512,
|
24 |
+
"timestep_activation_fn": "silu",
|
25 |
+
"use_learned_positional_embeddings": true,
|
26 |
+
"use_rotary_positional_embeddings": true
|
27 |
+
}
|
custom_nodes/ComfyUI-CogVideoXWrapper/configs/vae_config.json
ADDED
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_class_name": "AutoencoderKLCogVideoX",
|
3 |
+
"_diffusers_version": "0.31.0.dev0",
|
4 |
+
"act_fn": "silu",
|
5 |
+
"block_out_channels": [
|
6 |
+
128,
|
7 |
+
256,
|
8 |
+
256,
|
9 |
+
512
|
10 |
+
],
|
11 |
+
"down_block_types": [
|
12 |
+
"CogVideoXDownBlock3D",
|
13 |
+
"CogVideoXDownBlock3D",
|
14 |
+
"CogVideoXDownBlock3D",
|
15 |
+
"CogVideoXDownBlock3D"
|
16 |
+
],
|
17 |
+
"force_upcast": true,
|
18 |
+
"in_channels": 3,
|
19 |
+
"latent_channels": 16,
|
20 |
+
"latents_mean": null,
|
21 |
+
"latents_std": null,
|
22 |
+
"layers_per_block": 3,
|
23 |
+
"norm_eps": 1e-06,
|
24 |
+
"norm_num_groups": 32,
|
25 |
+
"out_channels": 3,
|
26 |
+
"sample_height": 480,
|
27 |
+
"sample_width": 720,
|
28 |
+
"scaling_factor": 0.7,
|
29 |
+
"shift_factor": null,
|
30 |
+
"temporal_compression_ratio": 4,
|
31 |
+
"up_block_types": [
|
32 |
+
"CogVideoXUpBlock3D",
|
33 |
+
"CogVideoXUpBlock3D",
|
34 |
+
"CogVideoXUpBlock3D",
|
35 |
+
"CogVideoXUpBlock3D"
|
36 |
+
],
|
37 |
+
"use_post_quant_conv": false,
|
38 |
+
"use_quant_conv": false
|
39 |
+
}
|
custom_nodes/ComfyUI-CogVideoXWrapper/context.py
ADDED
@@ -0,0 +1,184 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
from typing import Callable, Optional, List
|
3 |
+
|
4 |
+
|
5 |
+
def ordered_halving(val):
|
6 |
+
bin_str = f"{val:064b}"
|
7 |
+
bin_flip = bin_str[::-1]
|
8 |
+
as_int = int(bin_flip, 2)
|
9 |
+
|
10 |
+
return as_int / (1 << 64)
|
11 |
+
|
12 |
+
def does_window_roll_over(window: list[int], num_frames: int) -> tuple[bool, int]:
|
13 |
+
prev_val = -1
|
14 |
+
for i, val in enumerate(window):
|
15 |
+
val = val % num_frames
|
16 |
+
if val < prev_val:
|
17 |
+
return True, i
|
18 |
+
prev_val = val
|
19 |
+
return False, -1
|
20 |
+
|
21 |
+
def shift_window_to_start(window: list[int], num_frames: int):
|
22 |
+
start_val = window[0]
|
23 |
+
for i in range(len(window)):
|
24 |
+
# 1) subtract each element by start_val to move vals relative to the start of all frames
|
25 |
+
# 2) add num_frames and take modulus to get adjusted vals
|
26 |
+
window[i] = ((window[i] - start_val) + num_frames) % num_frames
|
27 |
+
|
28 |
+
def shift_window_to_end(window: list[int], num_frames: int):
|
29 |
+
# 1) shift window to start
|
30 |
+
shift_window_to_start(window, num_frames)
|
31 |
+
end_val = window[-1]
|
32 |
+
end_delta = num_frames - end_val - 1
|
33 |
+
for i in range(len(window)):
|
34 |
+
# 2) add end_delta to each val to slide windows to end
|
35 |
+
window[i] = window[i] + end_delta
|
36 |
+
|
37 |
+
def get_missing_indexes(windows: list[list[int]], num_frames: int) -> list[int]:
|
38 |
+
all_indexes = list(range(num_frames))
|
39 |
+
for w in windows:
|
40 |
+
for val in w:
|
41 |
+
try:
|
42 |
+
all_indexes.remove(val)
|
43 |
+
except ValueError:
|
44 |
+
pass
|
45 |
+
return all_indexes
|
46 |
+
|
47 |
+
def uniform_looped(
|
48 |
+
step: int = ...,
|
49 |
+
num_steps: Optional[int] = None,
|
50 |
+
num_frames: int = ...,
|
51 |
+
context_size: Optional[int] = None,
|
52 |
+
context_stride: int = 3,
|
53 |
+
context_overlap: int = 4,
|
54 |
+
closed_loop: bool = True,
|
55 |
+
):
|
56 |
+
if num_frames <= context_size:
|
57 |
+
yield list(range(num_frames))
|
58 |
+
return
|
59 |
+
|
60 |
+
context_stride = min(context_stride, int(np.ceil(np.log2(num_frames / context_size))) + 1)
|
61 |
+
|
62 |
+
for context_step in 1 << np.arange(context_stride):
|
63 |
+
pad = int(round(num_frames * ordered_halving(step)))
|
64 |
+
for j in range(
|
65 |
+
int(ordered_halving(step) * context_step) + pad,
|
66 |
+
num_frames + pad + (0 if closed_loop else -context_overlap),
|
67 |
+
(context_size * context_step - context_overlap),
|
68 |
+
):
|
69 |
+
yield [e % num_frames for e in range(j, j + context_size * context_step, context_step)]
|
70 |
+
|
71 |
+
#from AnimateDiff-Evolved by Kosinkadink (https://github.com/Kosinkadink/ComfyUI-AnimateDiff-Evolved)
|
72 |
+
def uniform_standard(
|
73 |
+
step: int = ...,
|
74 |
+
num_steps: Optional[int] = None,
|
75 |
+
num_frames: int = ...,
|
76 |
+
context_size: Optional[int] = None,
|
77 |
+
context_stride: int = 3,
|
78 |
+
context_overlap: int = 4,
|
79 |
+
closed_loop: bool = True,
|
80 |
+
):
|
81 |
+
windows = []
|
82 |
+
if num_frames <= context_size:
|
83 |
+
windows.append(list(range(num_frames)))
|
84 |
+
return windows
|
85 |
+
|
86 |
+
context_stride = min(context_stride, int(np.ceil(np.log2(num_frames / context_size))) + 1)
|
87 |
+
|
88 |
+
for context_step in 1 << np.arange(context_stride):
|
89 |
+
pad = int(round(num_frames * ordered_halving(step)))
|
90 |
+
for j in range(
|
91 |
+
int(ordered_halving(step) * context_step) + pad,
|
92 |
+
num_frames + pad + (0 if closed_loop else -context_overlap),
|
93 |
+
(context_size * context_step - context_overlap),
|
94 |
+
):
|
95 |
+
windows.append([e % num_frames for e in range(j, j + context_size * context_step, context_step)])
|
96 |
+
|
97 |
+
# now that windows are created, shift any windows that loop, and delete duplicate windows
|
98 |
+
delete_idxs = []
|
99 |
+
win_i = 0
|
100 |
+
while win_i < len(windows):
|
101 |
+
# if window is rolls over itself, need to shift it
|
102 |
+
is_roll, roll_idx = does_window_roll_over(windows[win_i], num_frames)
|
103 |
+
if is_roll:
|
104 |
+
roll_val = windows[win_i][roll_idx] # roll_val might not be 0 for windows of higher strides
|
105 |
+
shift_window_to_end(windows[win_i], num_frames=num_frames)
|
106 |
+
# check if next window (cyclical) is missing roll_val
|
107 |
+
if roll_val not in windows[(win_i+1) % len(windows)]:
|
108 |
+
# need to insert new window here - just insert window starting at roll_val
|
109 |
+
windows.insert(win_i+1, list(range(roll_val, roll_val + context_size)))
|
110 |
+
# delete window if it's not unique
|
111 |
+
for pre_i in range(0, win_i):
|
112 |
+
if windows[win_i] == windows[pre_i]:
|
113 |
+
delete_idxs.append(win_i)
|
114 |
+
break
|
115 |
+
win_i += 1
|
116 |
+
|
117 |
+
# reverse delete_idxs so that they will be deleted in an order that doesn't break idx correlation
|
118 |
+
delete_idxs.reverse()
|
119 |
+
for i in delete_idxs:
|
120 |
+
windows.pop(i)
|
121 |
+
return windows
|
122 |
+
|
123 |
+
def static_standard(
|
124 |
+
step: int = ...,
|
125 |
+
num_steps: Optional[int] = None,
|
126 |
+
num_frames: int = ...,
|
127 |
+
context_size: Optional[int] = None,
|
128 |
+
context_stride: int = 3,
|
129 |
+
context_overlap: int = 4,
|
130 |
+
closed_loop: bool = True,
|
131 |
+
):
|
132 |
+
windows = []
|
133 |
+
if num_frames <= context_size:
|
134 |
+
windows.append(list(range(num_frames)))
|
135 |
+
return windows
|
136 |
+
# always return the same set of windows
|
137 |
+
delta = context_size - context_overlap
|
138 |
+
for start_idx in range(0, num_frames, delta):
|
139 |
+
# if past the end of frames, move start_idx back to allow same context_length
|
140 |
+
ending = start_idx + context_size
|
141 |
+
if ending >= num_frames:
|
142 |
+
final_delta = ending - num_frames
|
143 |
+
final_start_idx = start_idx - final_delta
|
144 |
+
windows.append(list(range(final_start_idx, final_start_idx + context_size)))
|
145 |
+
break
|
146 |
+
windows.append(list(range(start_idx, start_idx + context_size)))
|
147 |
+
return windows
|
148 |
+
|
149 |
+
def get_context_scheduler(name: str) -> Callable:
|
150 |
+
if name == "uniform_looped":
|
151 |
+
return uniform_looped
|
152 |
+
elif name == "uniform_standard":
|
153 |
+
return uniform_standard
|
154 |
+
elif name == "static_standard":
|
155 |
+
return static_standard
|
156 |
+
else:
|
157 |
+
raise ValueError(f"Unknown context_overlap policy {name}")
|
158 |
+
|
159 |
+
|
160 |
+
def get_total_steps(
|
161 |
+
scheduler,
|
162 |
+
timesteps: List[int],
|
163 |
+
num_steps: Optional[int] = None,
|
164 |
+
num_frames: int = ...,
|
165 |
+
context_size: Optional[int] = None,
|
166 |
+
context_stride: int = 3,
|
167 |
+
context_overlap: int = 4,
|
168 |
+
closed_loop: bool = True,
|
169 |
+
):
|
170 |
+
return sum(
|
171 |
+
len(
|
172 |
+
list(
|
173 |
+
scheduler(
|
174 |
+
i,
|
175 |
+
num_steps,
|
176 |
+
num_frames,
|
177 |
+
context_size,
|
178 |
+
context_stride,
|
179 |
+
context_overlap,
|
180 |
+
)
|
181 |
+
)
|
182 |
+
)
|
183 |
+
for i in range(len(timesteps))
|
184 |
+
)
|
custom_nodes/ComfyUI-CogVideoXWrapper/custom_cogvideox_transformer_3d.py
ADDED
@@ -0,0 +1,779 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2024 The CogVideoX team, Tsinghua University & ZhipuAI and The HuggingFace Team.
|
2 |
+
# All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
from typing import Any, Dict, Optional, Tuple, Union
|
17 |
+
|
18 |
+
import torch
|
19 |
+
from torch import nn
|
20 |
+
import torch.nn.functional as F
|
21 |
+
|
22 |
+
import numpy as np
|
23 |
+
from einops import rearrange
|
24 |
+
|
25 |
+
from diffusers.configuration_utils import ConfigMixin, register_to_config
|
26 |
+
from diffusers.utils import logging
|
27 |
+
from diffusers.utils.torch_utils import maybe_allow_in_graph
|
28 |
+
from diffusers.models.attention import Attention, FeedForward
|
29 |
+
from diffusers.models.attention_processor import AttentionProcessor
|
30 |
+
from diffusers.models.embeddings import TimestepEmbedding, Timesteps
|
31 |
+
from diffusers.models.modeling_outputs import Transformer2DModelOutput
|
32 |
+
from diffusers.models.modeling_utils import ModelMixin
|
33 |
+
from diffusers.models.normalization import AdaLayerNorm, CogVideoXLayerNormZero
|
34 |
+
from diffusers.loaders import PeftAdapterMixin
|
35 |
+
from diffusers.models.embeddings import apply_rotary_emb
|
36 |
+
from .embeddings import CogVideoXPatchEmbed
|
37 |
+
|
38 |
+
from .enhance_a_video.enhance import get_feta_scores
|
39 |
+
from .enhance_a_video.globals import is_enhance_enabled, set_num_frames
|
40 |
+
|
41 |
+
|
42 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
43 |
+
|
44 |
+
try:
|
45 |
+
from sageattention import sageattn
|
46 |
+
SAGEATTN_IS_AVAILABLE = True
|
47 |
+
except:
|
48 |
+
SAGEATTN_IS_AVAILABLE = False
|
49 |
+
|
50 |
+
from comfy.ldm.modules.attention import optimized_attention
|
51 |
+
|
52 |
+
|
53 |
+
def set_attention_func(attention_mode, heads):
|
54 |
+
if attention_mode == "sdpa" or attention_mode == "fused_sdpa":
|
55 |
+
def func(q, k, v, is_causal=False, attn_mask=None):
|
56 |
+
return F.scaled_dot_product_attention(q, k, v, attn_mask=attn_mask, dropout_p=0.0, is_causal=is_causal)
|
57 |
+
return func
|
58 |
+
elif attention_mode == "comfy":
|
59 |
+
def func(q, k, v, is_causal=False, attn_mask=None):
|
60 |
+
return optimized_attention(q, k, v, mask=attn_mask, heads=heads, skip_reshape=True)
|
61 |
+
return func
|
62 |
+
|
63 |
+
elif attention_mode == "sageattn" or attention_mode == "fused_sageattn":
|
64 |
+
@torch.compiler.disable()
|
65 |
+
def func(q, k, v, is_causal=False, attn_mask=None):
|
66 |
+
return sageattn(q.to(v), k.to(v), v, is_causal=is_causal, attn_mask=attn_mask)
|
67 |
+
return func
|
68 |
+
elif attention_mode == "sageattn_qk_int8_pv_fp16_cuda":
|
69 |
+
from sageattention import sageattn_qk_int8_pv_fp16_cuda
|
70 |
+
@torch.compiler.disable()
|
71 |
+
def func(q, k, v, is_causal=False, attn_mask=None):
|
72 |
+
return sageattn_qk_int8_pv_fp16_cuda(q.to(v), k.to(v), v, is_causal=is_causal, attn_mask=attn_mask, pv_accum_dtype="fp32")
|
73 |
+
return func
|
74 |
+
elif attention_mode == "sageattn_qk_int8_pv_fp16_triton":
|
75 |
+
from sageattention import sageattn_qk_int8_pv_fp16_triton
|
76 |
+
@torch.compiler.disable()
|
77 |
+
def func(q, k, v, is_causal=False, attn_mask=None):
|
78 |
+
return sageattn_qk_int8_pv_fp16_triton(q.to(v), k.to(v), v, is_causal=is_causal, attn_mask=attn_mask)
|
79 |
+
return func
|
80 |
+
elif attention_mode == "sageattn_qk_int8_pv_fp8_cuda":
|
81 |
+
from sageattention import sageattn_qk_int8_pv_fp8_cuda
|
82 |
+
@torch.compiler.disable()
|
83 |
+
def func(q, k, v, is_causal=False, attn_mask=None):
|
84 |
+
return sageattn_qk_int8_pv_fp8_cuda(q.to(v), k.to(v), v, is_causal=is_causal, attn_mask=attn_mask, pv_accum_dtype="fp32+fp32")
|
85 |
+
return func
|
86 |
+
|
87 |
+
#for fastercache
|
88 |
+
def fft(tensor):
|
89 |
+
tensor_fft = torch.fft.fft2(tensor)
|
90 |
+
tensor_fft_shifted = torch.fft.fftshift(tensor_fft)
|
91 |
+
B, C, H, W = tensor.size()
|
92 |
+
radius = min(H, W) // 5
|
93 |
+
|
94 |
+
Y, X = torch.meshgrid(torch.arange(H), torch.arange(W))
|
95 |
+
center_x, center_y = W // 2, H // 2
|
96 |
+
mask = (X - center_x) ** 2 + (Y - center_y) ** 2 <= radius ** 2
|
97 |
+
low_freq_mask = mask.unsqueeze(0).unsqueeze(0).to(tensor.device)
|
98 |
+
high_freq_mask = ~low_freq_mask
|
99 |
+
|
100 |
+
low_freq_fft = tensor_fft_shifted * low_freq_mask
|
101 |
+
high_freq_fft = tensor_fft_shifted * high_freq_mask
|
102 |
+
|
103 |
+
return low_freq_fft, high_freq_fft
|
104 |
+
|
105 |
+
#for teacache
|
106 |
+
def poly1d(coefficients, x):
|
107 |
+
result = torch.zeros_like(x)
|
108 |
+
for i, coeff in enumerate(coefficients):
|
109 |
+
result += coeff * (x ** (len(coefficients) - 1 - i))
|
110 |
+
return result.abs()
|
111 |
+
|
112 |
+
#region Attention
|
113 |
+
class CogVideoXAttnProcessor2_0:
|
114 |
+
r"""
|
115 |
+
Processor for implementing scaled dot-product attention for the CogVideoX model. It applies a rotary embedding on
|
116 |
+
query and key vectors, but does not include spatial normalization.
|
117 |
+
"""
|
118 |
+
|
119 |
+
def __init__(self, attn_func, attention_mode: Optional[str] = None):
|
120 |
+
if not hasattr(F, "scaled_dot_product_attention"):
|
121 |
+
raise ImportError("CogVideoXAttnProcessor requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.")
|
122 |
+
self.attention_mode = attention_mode
|
123 |
+
self.attn_func = attn_func
|
124 |
+
def __call__(
|
125 |
+
self,
|
126 |
+
attn: Attention,
|
127 |
+
hidden_states: torch.Tensor,
|
128 |
+
encoder_hidden_states: torch.Tensor,
|
129 |
+
attention_mask: Optional[torch.Tensor] = None,
|
130 |
+
image_rotary_emb: Optional[torch.Tensor] = None,
|
131 |
+
) -> torch.Tensor:
|
132 |
+
text_seq_length = encoder_hidden_states.size(1)
|
133 |
+
|
134 |
+
hidden_states = torch.cat([encoder_hidden_states, hidden_states], dim=1)
|
135 |
+
|
136 |
+
batch_size, sequence_length, _ = (
|
137 |
+
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
|
138 |
+
)
|
139 |
+
|
140 |
+
if attention_mask is not None:
|
141 |
+
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
|
142 |
+
attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1])
|
143 |
+
|
144 |
+
if attn.to_q.weight.dtype == torch.float16 or attn.to_q.weight.dtype == torch.bfloat16:
|
145 |
+
hidden_states = hidden_states.to(attn.to_q.weight.dtype)
|
146 |
+
|
147 |
+
if not "fused" in self.attention_mode:
|
148 |
+
query = attn.to_q(hidden_states)
|
149 |
+
key = attn.to_k(hidden_states)
|
150 |
+
value = attn.to_v(hidden_states)
|
151 |
+
else:
|
152 |
+
qkv = attn.to_qkv(hidden_states)
|
153 |
+
split_size = qkv.shape[-1] // 3
|
154 |
+
query, key, value = torch.split(qkv, split_size, dim=-1)
|
155 |
+
|
156 |
+
inner_dim = key.shape[-1]
|
157 |
+
head_dim = inner_dim // attn.heads
|
158 |
+
|
159 |
+
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
160 |
+
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
161 |
+
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
162 |
+
|
163 |
+
if attn.norm_q is not None:
|
164 |
+
query = attn.norm_q(query)
|
165 |
+
if attn.norm_k is not None:
|
166 |
+
key = attn.norm_k(key)
|
167 |
+
|
168 |
+
# Apply RoPE if needed
|
169 |
+
if image_rotary_emb is not None:
|
170 |
+
query[:, :, text_seq_length:] = apply_rotary_emb(query[:, :, text_seq_length:], image_rotary_emb)
|
171 |
+
if not attn.is_cross_attention:
|
172 |
+
key[:, :, text_seq_length:] = apply_rotary_emb(key[:, :, text_seq_length:], image_rotary_emb)
|
173 |
+
|
174 |
+
#feta
|
175 |
+
if is_enhance_enabled():
|
176 |
+
feta_scores = get_feta_scores(attn, query, key, head_dim, text_seq_length)
|
177 |
+
|
178 |
+
hidden_states = self.attn_func(query, key, value, attn_mask=attention_mask, is_causal=False)
|
179 |
+
|
180 |
+
if self.attention_mode != "comfy":
|
181 |
+
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
|
182 |
+
|
183 |
+
# linear proj
|
184 |
+
hidden_states = attn.to_out[0](hidden_states)
|
185 |
+
# dropout
|
186 |
+
hidden_states = attn.to_out[1](hidden_states)
|
187 |
+
|
188 |
+
encoder_hidden_states, hidden_states = hidden_states.split(
|
189 |
+
[text_seq_length, hidden_states.size(1) - text_seq_length], dim=1
|
190 |
+
)
|
191 |
+
|
192 |
+
if is_enhance_enabled():
|
193 |
+
hidden_states *= feta_scores
|
194 |
+
|
195 |
+
return hidden_states, encoder_hidden_states
|
196 |
+
|
197 |
+
#region Blocks
|
198 |
+
@maybe_allow_in_graph
|
199 |
+
class CogVideoXBlock(nn.Module):
|
200 |
+
|
201 |
+
r"""
|
202 |
+
Transformer block used in [CogVideoX](https://github.com/THUDM/CogVideo) model.
|
203 |
+
|
204 |
+
Parameters:
|
205 |
+
dim (`int`):
|
206 |
+
The number of channels in the input and output.
|
207 |
+
num_attention_heads (`int`):
|
208 |
+
The number of heads to use for multi-head attention.
|
209 |
+
attention_head_dim (`int`):
|
210 |
+
The number of channels in each head.
|
211 |
+
time_embed_dim (`int`):
|
212 |
+
The number of channels in timestep embedding.
|
213 |
+
dropout (`float`, defaults to `0.0`):
|
214 |
+
The dropout probability to use.
|
215 |
+
activation_fn (`str`, defaults to `"gelu-approximate"`):
|
216 |
+
Activation function to be used in feed-forward.
|
217 |
+
attention_bias (`bool`, defaults to `False`):
|
218 |
+
Whether or not to use bias in attention projection layers.
|
219 |
+
qk_norm (`bool`, defaults to `True`):
|
220 |
+
Whether or not to use normalization after query and key projections in Attention.
|
221 |
+
norm_elementwise_affine (`bool`, defaults to `True`):
|
222 |
+
Whether to use learnable elementwise affine parameters for normalization.
|
223 |
+
norm_eps (`float`, defaults to `1e-5`):
|
224 |
+
Epsilon value for normalization layers.
|
225 |
+
final_dropout (`bool` defaults to `False`):
|
226 |
+
Whether to apply a final dropout after the last feed-forward layer.
|
227 |
+
ff_inner_dim (`int`, *optional*, defaults to `None`):
|
228 |
+
Custom hidden dimension of Feed-forward layer. If not provided, `4 * dim` is used.
|
229 |
+
ff_bias (`bool`, defaults to `True`):
|
230 |
+
Whether or not to use bias in Feed-forward layer.
|
231 |
+
attention_out_bias (`bool`, defaults to `True`):
|
232 |
+
Whether or not to use bias in Attention output projection layer.
|
233 |
+
"""
|
234 |
+
|
235 |
+
def __init__(
|
236 |
+
self,
|
237 |
+
dim: int,
|
238 |
+
num_attention_heads: int,
|
239 |
+
attention_head_dim: int,
|
240 |
+
time_embed_dim: int,
|
241 |
+
dropout: float = 0.0,
|
242 |
+
activation_fn: str = "gelu-approximate",
|
243 |
+
attention_bias: bool = False,
|
244 |
+
qk_norm: bool = True,
|
245 |
+
norm_elementwise_affine: bool = True,
|
246 |
+
norm_eps: float = 1e-5,
|
247 |
+
final_dropout: bool = True,
|
248 |
+
ff_inner_dim: Optional[int] = None,
|
249 |
+
ff_bias: bool = True,
|
250 |
+
attention_out_bias: bool = True,
|
251 |
+
attention_mode: Optional[str] = "sdpa",
|
252 |
+
):
|
253 |
+
super().__init__()
|
254 |
+
|
255 |
+
# 1. Self Attention
|
256 |
+
self.norm1 = CogVideoXLayerNormZero(time_embed_dim, dim, norm_elementwise_affine, norm_eps, bias=True)
|
257 |
+
|
258 |
+
attn_func = set_attention_func(attention_mode, num_attention_heads)
|
259 |
+
|
260 |
+
self.attn1 = Attention(
|
261 |
+
query_dim=dim,
|
262 |
+
dim_head=attention_head_dim,
|
263 |
+
heads=num_attention_heads,
|
264 |
+
qk_norm="layer_norm" if qk_norm else None,
|
265 |
+
eps=1e-6,
|
266 |
+
bias=attention_bias,
|
267 |
+
out_bias=attention_out_bias,
|
268 |
+
processor=CogVideoXAttnProcessor2_0(attn_func, attention_mode=attention_mode),
|
269 |
+
)
|
270 |
+
|
271 |
+
# 2. Feed Forward
|
272 |
+
self.norm2 = CogVideoXLayerNormZero(time_embed_dim, dim, norm_elementwise_affine, norm_eps, bias=True)
|
273 |
+
|
274 |
+
self.ff = FeedForward(
|
275 |
+
dim,
|
276 |
+
dropout=dropout,
|
277 |
+
activation_fn=activation_fn,
|
278 |
+
final_dropout=final_dropout,
|
279 |
+
inner_dim=ff_inner_dim,
|
280 |
+
bias=ff_bias,
|
281 |
+
)
|
282 |
+
self.cached_hidden_states = []
|
283 |
+
self.cached_encoder_hidden_states = []
|
284 |
+
|
285 |
+
def forward(
|
286 |
+
self,
|
287 |
+
hidden_states: torch.Tensor,
|
288 |
+
encoder_hidden_states: torch.Tensor,
|
289 |
+
temb: torch.Tensor,
|
290 |
+
image_rotary_emb: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
|
291 |
+
video_flow_feature: Optional[torch.Tensor] = None,
|
292 |
+
fuser=None,
|
293 |
+
block_use_fastercache=False,
|
294 |
+
fastercache_counter=0,
|
295 |
+
fastercache_start_step=15,
|
296 |
+
fastercache_device="cuda:0",
|
297 |
+
) -> torch.Tensor:
|
298 |
+
#print("hidden_states in block: ", hidden_states.shape) #1.5: torch.Size([2, 3200, 3072]) 10.: torch.Size([2, 6400, 3072])
|
299 |
+
text_seq_length = encoder_hidden_states.size(1)
|
300 |
+
|
301 |
+
# norm & modulate
|
302 |
+
norm_hidden_states, norm_encoder_hidden_states, gate_msa, enc_gate_msa = self.norm1(
|
303 |
+
hidden_states, encoder_hidden_states, temb
|
304 |
+
)
|
305 |
+
#print("norm_hidden_states in block: ", norm_hidden_states.shape) #torch.Size([2, 3200, 3072])
|
306 |
+
|
307 |
+
# Tora Motion-guidance Fuser
|
308 |
+
if video_flow_feature is not None:
|
309 |
+
H, W = video_flow_feature.shape[-2:]
|
310 |
+
T = norm_hidden_states.shape[1] // H // W
|
311 |
+
h = rearrange(norm_hidden_states, "B (T H W) C -> (B T) C H W", H=H, W=W)
|
312 |
+
h = fuser(h, video_flow_feature.to(h), T=T)
|
313 |
+
norm_hidden_states = rearrange(h, "(B T) C H W -> B (T H W) C", T=T)
|
314 |
+
del h, fuser
|
315 |
+
|
316 |
+
#region fastercache
|
317 |
+
if block_use_fastercache:
|
318 |
+
B = norm_hidden_states.shape[0]
|
319 |
+
if fastercache_counter >= fastercache_start_step + 3 and fastercache_counter%3!=0 and self.cached_hidden_states[-1].shape[0] >= B:
|
320 |
+
attn_hidden_states = (
|
321 |
+
self.cached_hidden_states[1][:B] +
|
322 |
+
(self.cached_hidden_states[1][:B] - self.cached_hidden_states[0][:B])
|
323 |
+
* 0.3
|
324 |
+
).to(norm_hidden_states.device, non_blocking=True)
|
325 |
+
attn_encoder_hidden_states = (
|
326 |
+
self.cached_encoder_hidden_states[1][:B] +
|
327 |
+
(self.cached_encoder_hidden_states[1][:B] - self.cached_encoder_hidden_states[0][:B])
|
328 |
+
* 0.3
|
329 |
+
).to(norm_hidden_states.device, non_blocking=True)
|
330 |
+
else:
|
331 |
+
attn_hidden_states, attn_encoder_hidden_states = self.attn1(
|
332 |
+
hidden_states=norm_hidden_states,
|
333 |
+
encoder_hidden_states=norm_encoder_hidden_states,
|
334 |
+
image_rotary_emb=image_rotary_emb,
|
335 |
+
)
|
336 |
+
if fastercache_counter == fastercache_start_step:
|
337 |
+
self.cached_hidden_states = [attn_hidden_states.to(fastercache_device), attn_hidden_states.to(fastercache_device)]
|
338 |
+
self.cached_encoder_hidden_states = [attn_encoder_hidden_states.to(fastercache_device), attn_encoder_hidden_states.to(fastercache_device)]
|
339 |
+
elif fastercache_counter > fastercache_start_step:
|
340 |
+
self.cached_hidden_states[-1].copy_(attn_hidden_states.to(fastercache_device))
|
341 |
+
self.cached_encoder_hidden_states[-1].copy_(attn_encoder_hidden_states.to(fastercache_device))
|
342 |
+
else:
|
343 |
+
attn_hidden_states, attn_encoder_hidden_states = self.attn1(
|
344 |
+
hidden_states=norm_hidden_states,
|
345 |
+
encoder_hidden_states=norm_encoder_hidden_states,
|
346 |
+
image_rotary_emb=image_rotary_emb
|
347 |
+
)
|
348 |
+
|
349 |
+
hidden_states = hidden_states + gate_msa * attn_hidden_states
|
350 |
+
encoder_hidden_states = encoder_hidden_states + enc_gate_msa * attn_encoder_hidden_states
|
351 |
+
|
352 |
+
# norm & modulate
|
353 |
+
|
354 |
+
norm_hidden_states, norm_encoder_hidden_states, gate_ff, enc_gate_ff = self.norm2(
|
355 |
+
hidden_states, encoder_hidden_states, temb
|
356 |
+
)
|
357 |
+
|
358 |
+
# feed-forward
|
359 |
+
norm_hidden_states = torch.cat([norm_encoder_hidden_states, norm_hidden_states], dim=1)
|
360 |
+
ff_output = self.ff(norm_hidden_states)
|
361 |
+
|
362 |
+
hidden_states = hidden_states + gate_ff * ff_output[:, text_seq_length:]
|
363 |
+
encoder_hidden_states = encoder_hidden_states + enc_gate_ff * ff_output[:, :text_seq_length]
|
364 |
+
|
365 |
+
return hidden_states, encoder_hidden_states
|
366 |
+
|
367 |
+
#region Transformer
|
368 |
+
class CogVideoXTransformer3DModel(ModelMixin, ConfigMixin, PeftAdapterMixin):
|
369 |
+
"""
|
370 |
+
A Transformer model for video-like data in [CogVideoX](https://github.com/THUDM/CogVideo).
|
371 |
+
|
372 |
+
Parameters:
|
373 |
+
num_attention_heads (`int`, defaults to `30`):
|
374 |
+
The number of heads to use for multi-head attention.
|
375 |
+
attention_head_dim (`int`, defaults to `64`):
|
376 |
+
The number of channels in each head.
|
377 |
+
in_channels (`int`, defaults to `16`):
|
378 |
+
The number of channels in the input.
|
379 |
+
out_channels (`int`, *optional*, defaults to `16`):
|
380 |
+
The number of channels in the output.
|
381 |
+
flip_sin_to_cos (`bool`, defaults to `True`):
|
382 |
+
Whether to flip the sin to cos in the time embedding.
|
383 |
+
time_embed_dim (`int`, defaults to `512`):
|
384 |
+
Output dimension of timestep embeddings.
|
385 |
+
text_embed_dim (`int`, defaults to `4096`):
|
386 |
+
Input dimension of text embeddings from the text encoder.
|
387 |
+
num_layers (`int`, defaults to `30`):
|
388 |
+
The number of layers of Transformer blocks to use.
|
389 |
+
dropout (`float`, defaults to `0.0`):
|
390 |
+
The dropout probability to use.
|
391 |
+
attention_bias (`bool`, defaults to `True`):
|
392 |
+
Whether or not to use bias in the attention projection layers.
|
393 |
+
sample_width (`int`, defaults to `90`):
|
394 |
+
The width of the input latents.
|
395 |
+
sample_height (`int`, defaults to `60`):
|
396 |
+
The height of the input latents.
|
397 |
+
sample_frames (`int`, defaults to `49`):
|
398 |
+
The number of frames in the input latents. Note that this parameter was incorrectly initialized to 49
|
399 |
+
instead of 13 because CogVideoX processed 13 latent frames at once in its default and recommended settings,
|
400 |
+
but cannot be changed to the correct value to ensure backwards compatibility. To create a transformer with
|
401 |
+
K latent frames, the correct value to pass here would be: ((K - 1) * temporal_compression_ratio + 1).
|
402 |
+
patch_size (`int`, defaults to `2`):
|
403 |
+
The size of the patches to use in the patch embedding layer.
|
404 |
+
temporal_compression_ratio (`int`, defaults to `4`):
|
405 |
+
The compression ratio across the temporal dimension. See documentation for `sample_frames`.
|
406 |
+
max_text_seq_length (`int`, defaults to `226`):
|
407 |
+
The maximum sequence length of the input text embeddings.
|
408 |
+
activation_fn (`str`, defaults to `"gelu-approximate"`):
|
409 |
+
Activation function to use in feed-forward.
|
410 |
+
timestep_activation_fn (`str`, defaults to `"silu"`):
|
411 |
+
Activation function to use when generating the timestep embeddings.
|
412 |
+
norm_elementwise_affine (`bool`, defaults to `True`):
|
413 |
+
Whether or not to use elementwise affine in normalization layers.
|
414 |
+
norm_eps (`float`, defaults to `1e-5`):
|
415 |
+
The epsilon value to use in normalization layers.
|
416 |
+
spatial_interpolation_scale (`float`, defaults to `1.875`):
|
417 |
+
Scaling factor to apply in 3D positional embeddings across spatial dimensions.
|
418 |
+
temporal_interpolation_scale (`float`, defaults to `1.0`):
|
419 |
+
Scaling factor to apply in 3D positional embeddings across temporal dimensions.
|
420 |
+
"""
|
421 |
+
|
422 |
+
_supports_gradient_checkpointing = True
|
423 |
+
|
424 |
+
@register_to_config
|
425 |
+
def __init__(
|
426 |
+
self,
|
427 |
+
num_attention_heads: int = 30,
|
428 |
+
attention_head_dim: int = 64,
|
429 |
+
in_channels: int = 16,
|
430 |
+
out_channels: Optional[int] = 16,
|
431 |
+
flip_sin_to_cos: bool = True,
|
432 |
+
freq_shift: int = 0,
|
433 |
+
time_embed_dim: int = 512,
|
434 |
+
ofs_embed_dim: Optional[int] = None,
|
435 |
+
text_embed_dim: int = 4096,
|
436 |
+
num_layers: int = 30,
|
437 |
+
dropout: float = 0.0,
|
438 |
+
attention_bias: bool = True,
|
439 |
+
sample_width: int = 90,
|
440 |
+
sample_height: int = 60,
|
441 |
+
sample_frames: int = 49,
|
442 |
+
patch_size: int = 2,
|
443 |
+
patch_size_t: int = None,
|
444 |
+
temporal_compression_ratio: int = 4,
|
445 |
+
max_text_seq_length: int = 226,
|
446 |
+
activation_fn: str = "gelu-approximate",
|
447 |
+
timestep_activation_fn: str = "silu",
|
448 |
+
norm_elementwise_affine: bool = True,
|
449 |
+
norm_eps: float = 1e-5,
|
450 |
+
spatial_interpolation_scale: float = 1.875,
|
451 |
+
temporal_interpolation_scale: float = 1.0,
|
452 |
+
use_rotary_positional_embeddings: bool = False,
|
453 |
+
use_learned_positional_embeddings: bool = False,
|
454 |
+
patch_bias: bool = True,
|
455 |
+
attention_mode: Optional[str] = "sdpa",
|
456 |
+
):
|
457 |
+
super().__init__()
|
458 |
+
inner_dim = num_attention_heads * attention_head_dim
|
459 |
+
|
460 |
+
if not use_rotary_positional_embeddings and use_learned_positional_embeddings:
|
461 |
+
raise ValueError(
|
462 |
+
"There are no CogVideoX checkpoints available with disable rotary embeddings and learned positional "
|
463 |
+
"embeddings. If you're using a custom model and/or believe this should be supported, please open an "
|
464 |
+
"issue at https://github.com/huggingface/diffusers/issues."
|
465 |
+
)
|
466 |
+
|
467 |
+
# 1. Patch embedding
|
468 |
+
self.patch_embed = CogVideoXPatchEmbed(
|
469 |
+
patch_size=patch_size,
|
470 |
+
patch_size_t=patch_size_t,
|
471 |
+
in_channels=in_channels,
|
472 |
+
embed_dim=inner_dim,
|
473 |
+
text_embed_dim=text_embed_dim,
|
474 |
+
bias=patch_bias,
|
475 |
+
sample_width=sample_width,
|
476 |
+
sample_height=sample_height,
|
477 |
+
sample_frames=sample_frames,
|
478 |
+
temporal_compression_ratio=temporal_compression_ratio,
|
479 |
+
max_text_seq_length=max_text_seq_length,
|
480 |
+
spatial_interpolation_scale=spatial_interpolation_scale,
|
481 |
+
temporal_interpolation_scale=temporal_interpolation_scale,
|
482 |
+
use_positional_embeddings=not use_rotary_positional_embeddings,
|
483 |
+
use_learned_positional_embeddings=use_learned_positional_embeddings,
|
484 |
+
)
|
485 |
+
self.embedding_dropout = nn.Dropout(dropout)
|
486 |
+
|
487 |
+
# 2. Time embeddings
|
488 |
+
self.time_proj = Timesteps(inner_dim, flip_sin_to_cos, freq_shift)
|
489 |
+
self.time_embedding = TimestepEmbedding(inner_dim, time_embed_dim, timestep_activation_fn)
|
490 |
+
|
491 |
+
self.ofs_proj = None
|
492 |
+
self.ofs_embedding = None
|
493 |
+
|
494 |
+
if ofs_embed_dim:
|
495 |
+
self.ofs_proj = Timesteps(ofs_embed_dim, flip_sin_to_cos, freq_shift)
|
496 |
+
self.ofs_embedding = TimestepEmbedding(ofs_embed_dim, ofs_embed_dim, timestep_activation_fn) # same as time embeddings, for ofs
|
497 |
+
|
498 |
+
# 3. Define spatio-temporal transformers blocks
|
499 |
+
self.transformer_blocks = nn.ModuleList(
|
500 |
+
[
|
501 |
+
CogVideoXBlock(
|
502 |
+
dim=inner_dim,
|
503 |
+
num_attention_heads=num_attention_heads,
|
504 |
+
attention_head_dim=attention_head_dim,
|
505 |
+
time_embed_dim=time_embed_dim,
|
506 |
+
dropout=dropout,
|
507 |
+
activation_fn=activation_fn,
|
508 |
+
attention_bias=attention_bias,
|
509 |
+
attention_mode=attention_mode,
|
510 |
+
norm_elementwise_affine=norm_elementwise_affine,
|
511 |
+
norm_eps=norm_eps,
|
512 |
+
)
|
513 |
+
for _ in range(num_layers)
|
514 |
+
]
|
515 |
+
)
|
516 |
+
self.norm_final = nn.LayerNorm(inner_dim, norm_eps, norm_elementwise_affine)
|
517 |
+
|
518 |
+
# 4. Output blocks
|
519 |
+
self.norm_out = AdaLayerNorm(
|
520 |
+
embedding_dim=time_embed_dim,
|
521 |
+
output_dim=2 * inner_dim,
|
522 |
+
norm_elementwise_affine=norm_elementwise_affine,
|
523 |
+
norm_eps=norm_eps,
|
524 |
+
chunk_dim=1,
|
525 |
+
)
|
526 |
+
if patch_size_t is None:
|
527 |
+
# For CogVideox 1.0
|
528 |
+
output_dim = patch_size * patch_size * out_channels
|
529 |
+
else:
|
530 |
+
# For CogVideoX 1.5
|
531 |
+
output_dim = patch_size * patch_size * patch_size_t * out_channels
|
532 |
+
|
533 |
+
self.proj_out = nn.Linear(inner_dim, output_dim)
|
534 |
+
|
535 |
+
self.gradient_checkpointing = False
|
536 |
+
|
537 |
+
self.attention_mode = attention_mode
|
538 |
+
|
539 |
+
#tora
|
540 |
+
self.fuser_list = None
|
541 |
+
|
542 |
+
#fastercache
|
543 |
+
self.use_fastercache = False
|
544 |
+
self.fastercache_counter = 0
|
545 |
+
self.fastercache_start_step = 15
|
546 |
+
self.fastercache_lf_step = 40
|
547 |
+
self.fastercache_hf_step = 30
|
548 |
+
self.fastercache_device = "cuda"
|
549 |
+
self.fastercache_num_blocks_to_cache = len(self.transformer_blocks)
|
550 |
+
|
551 |
+
#teacache
|
552 |
+
self.use_teacache = False
|
553 |
+
self.teacache_rel_l1_thresh = 0.0
|
554 |
+
if not self.config.use_rotary_positional_embeddings:
|
555 |
+
#CogVideoX-2B
|
556 |
+
self.teacache_coefficients = [-3.10658903e+01, 2.54732368e+01, -5.92380459e+00, 1.75769064e+00, -3.61568434e-03]
|
557 |
+
else:
|
558 |
+
#CogVideoX-5B
|
559 |
+
self.teacache_coefficients = [-1.53880483e+03, 8.43202495e+02, -1.34363087e+02, 7.97131516e+00, -5.23162339e-02]
|
560 |
+
|
561 |
+
|
562 |
+
def _set_gradient_checkpointing(self, module, value=False):
|
563 |
+
self.gradient_checkpointing = value
|
564 |
+
#region forward
|
565 |
+
def forward(
|
566 |
+
self,
|
567 |
+
hidden_states: torch.Tensor,
|
568 |
+
encoder_hidden_states: torch.Tensor,
|
569 |
+
timestep: Union[int, float, torch.LongTensor],
|
570 |
+
timestep_cond: Optional[torch.Tensor] = None,
|
571 |
+
ofs: Optional[Union[int, float, torch.LongTensor]] = None,
|
572 |
+
image_rotary_emb: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
|
573 |
+
controlnet_states: torch.Tensor = None,
|
574 |
+
controlnet_weights: Optional[Union[float, int, list, np.ndarray, torch.FloatTensor]] = 1.0,
|
575 |
+
video_flow_features: Optional[torch.Tensor] = None,
|
576 |
+
return_dict: bool = True,
|
577 |
+
):
|
578 |
+
batch_size, num_frames, channels, height, width = hidden_states.shape
|
579 |
+
|
580 |
+
set_num_frames(num_frames) #enhance a video global
|
581 |
+
|
582 |
+
# 1. Time embedding
|
583 |
+
timesteps = timestep
|
584 |
+
t_emb = self.time_proj(timesteps)
|
585 |
+
|
586 |
+
# timesteps does not contain any weights and will always return f32 tensors
|
587 |
+
# but time_embedding might actually be running in fp16. so we need to cast here.
|
588 |
+
# there might be better ways to encapsulate this.
|
589 |
+
t_emb = t_emb.to(dtype=hidden_states.dtype)
|
590 |
+
|
591 |
+
emb = self.time_embedding(t_emb, timestep_cond)
|
592 |
+
if self.ofs_embedding is not None: #1.5 I2V
|
593 |
+
ofs_emb = self.ofs_proj(ofs)
|
594 |
+
ofs_emb = ofs_emb.to(dtype=hidden_states.dtype)
|
595 |
+
ofs_emb = self.ofs_embedding(ofs_emb)
|
596 |
+
emb = emb + ofs_emb
|
597 |
+
|
598 |
+
# 2. Patch embedding
|
599 |
+
p = self.config.patch_size
|
600 |
+
p_t = self.config.patch_size_t
|
601 |
+
|
602 |
+
#print("hidden_states before patch_embedding", hidden_states.shape) #torch.Size([2, 4, 16, 60, 90])
|
603 |
+
|
604 |
+
hidden_states = self.patch_embed(encoder_hidden_states, hidden_states)
|
605 |
+
#print("hidden_states after patch_embedding", hidden_states.shape) #1.5: torch.Size([2, 2926, 3072]) #1.0: torch.Size([2, 5626, 3072])
|
606 |
+
hidden_states = self.embedding_dropout(hidden_states)
|
607 |
+
|
608 |
+
text_seq_length = encoder_hidden_states.shape[1]
|
609 |
+
encoder_hidden_states = hidden_states[:, :text_seq_length]
|
610 |
+
hidden_states = hidden_states[:, text_seq_length:]
|
611 |
+
#print("hidden_states after split", hidden_states.shape) #1.5: torch.Size([2, 2700, 3072]) #1.0: torch.Size([2, 5400, 3072])
|
612 |
+
|
613 |
+
if self.use_fastercache:
|
614 |
+
self.fastercache_counter+=1
|
615 |
+
if self.fastercache_counter >= self.fastercache_start_step + 3 and self.fastercache_counter % 5 !=0:
|
616 |
+
# 3. Transformer blocks
|
617 |
+
for i, block in enumerate(self.transformer_blocks):
|
618 |
+
hidden_states, encoder_hidden_states = block(
|
619 |
+
hidden_states=hidden_states[:1],
|
620 |
+
encoder_hidden_states=encoder_hidden_states[:1],
|
621 |
+
temb=emb[:1],
|
622 |
+
image_rotary_emb=image_rotary_emb,
|
623 |
+
video_flow_feature=video_flow_features[i][:1] if video_flow_features is not None else None,
|
624 |
+
fuser = self.fuser_list[i] if self.fuser_list is not None else None,
|
625 |
+
block_use_fastercache = i <= self.fastercache_num_blocks_to_cache,
|
626 |
+
fastercache_counter = self.fastercache_counter,
|
627 |
+
fastercache_start_step = self.fastercache_start_step,
|
628 |
+
fastercache_device = self.fastercache_device
|
629 |
+
)
|
630 |
+
|
631 |
+
if (controlnet_states is not None) and (i < len(controlnet_states)):
|
632 |
+
controlnet_states_block = controlnet_states[i]
|
633 |
+
controlnet_block_weight = 1.0
|
634 |
+
if isinstance(controlnet_weights, (list, np.ndarray)) or torch.is_tensor(controlnet_weights):
|
635 |
+
controlnet_block_weight = controlnet_weights[i]
|
636 |
+
elif isinstance(controlnet_weights, (float, int)):
|
637 |
+
controlnet_block_weight = controlnet_weights
|
638 |
+
|
639 |
+
hidden_states = hidden_states + controlnet_states_block * controlnet_block_weight
|
640 |
+
|
641 |
+
if not self.config.use_rotary_positional_embeddings:
|
642 |
+
# CogVideoX-2B
|
643 |
+
hidden_states = self.norm_final(hidden_states)
|
644 |
+
else:
|
645 |
+
# CogVideoX-5B
|
646 |
+
hidden_states = torch.cat([encoder_hidden_states, hidden_states], dim=1)
|
647 |
+
hidden_states = self.norm_final(hidden_states)
|
648 |
+
hidden_states = hidden_states[:, text_seq_length:]
|
649 |
+
|
650 |
+
# 4. Final block
|
651 |
+
hidden_states = self.norm_out(hidden_states, temb=emb[:1])
|
652 |
+
hidden_states = self.proj_out(hidden_states)
|
653 |
+
|
654 |
+
# 5. Unpatchify
|
655 |
+
# Note: we use `-1` instead of `channels`:
|
656 |
+
# - It is okay to `channels` use for CogVideoX-2b and CogVideoX-5b (number of input channels is equal to output channels)
|
657 |
+
# - However, for CogVideoX-5b-I2V also takes concatenated input image latents (number of input channels is twice the output channels)
|
658 |
+
|
659 |
+
if p_t is None:
|
660 |
+
output = hidden_states.reshape(1, num_frames, height // p, width // p, -1, p, p)
|
661 |
+
output = output.permute(0, 1, 4, 2, 5, 3, 6).flatten(5, 6).flatten(3, 4)
|
662 |
+
else:
|
663 |
+
output = hidden_states.reshape(
|
664 |
+
1, (num_frames + p_t - 1) // p_t, height // p, width // p, -1, p_t, p, p
|
665 |
+
)
|
666 |
+
output = output.permute(0, 1, 5, 4, 2, 6, 3, 7).flatten(6, 7).flatten(4, 5).flatten(1, 2)
|
667 |
+
|
668 |
+
(bb, tt, cc, hh, ww) = output.shape
|
669 |
+
cond = rearrange(output, "B T C H W -> (B T) C H W", B=bb, C=cc, T=tt, H=hh, W=ww)
|
670 |
+
lf_c, hf_c = fft(cond.float())
|
671 |
+
#lf_step = 40
|
672 |
+
#hf_step = 30
|
673 |
+
if self.fastercache_counter <= self.fastercache_lf_step:
|
674 |
+
self.delta_lf = self.delta_lf * 1.1
|
675 |
+
if self.fastercache_counter >= self.fastercache_hf_step:
|
676 |
+
self.delta_hf = self.delta_hf * 1.1
|
677 |
+
|
678 |
+
new_hf_uc = self.delta_hf + hf_c
|
679 |
+
new_lf_uc = self.delta_lf + lf_c
|
680 |
+
|
681 |
+
combine_uc = new_lf_uc + new_hf_uc
|
682 |
+
combined_fft = torch.fft.ifftshift(combine_uc)
|
683 |
+
recovered_uncond = torch.fft.ifft2(combined_fft).real
|
684 |
+
recovered_uncond = rearrange(recovered_uncond.to(output.dtype), "(B T) C H W -> B T C H W", B=bb, C=cc, T=tt, H=hh, W=ww)
|
685 |
+
output = torch.cat([output, recovered_uncond])
|
686 |
+
else:
|
687 |
+
if self.use_teacache:
|
688 |
+
if not hasattr(self, 'accumulated_rel_l1_distance'):
|
689 |
+
should_calc = True
|
690 |
+
self.accumulated_rel_l1_distance = 0
|
691 |
+
else:
|
692 |
+
self.accumulated_rel_l1_distance += poly1d(self.teacache_coefficients, ((emb-self.previous_modulated_input).abs().mean() / self.previous_modulated_input.abs().mean()))
|
693 |
+
if self.accumulated_rel_l1_distance < self.teacache_rel_l1_thresh:
|
694 |
+
should_calc = False
|
695 |
+
self.teacache_counter += 1
|
696 |
+
else:
|
697 |
+
should_calc = True
|
698 |
+
self.accumulated_rel_l1_distance = 0
|
699 |
+
#print("self.accumulated_rel_l1_distance ", self.accumulated_rel_l1_distance)
|
700 |
+
self.previous_modulated_input = emb
|
701 |
+
if not should_calc:
|
702 |
+
hidden_states += self.previous_residual
|
703 |
+
encoder_hidden_states += self.previous_residual_encoder
|
704 |
+
|
705 |
+
if not self.use_teacache or (self.use_teacache and should_calc):
|
706 |
+
if self.use_teacache:
|
707 |
+
ori_hidden_states = hidden_states.clone()
|
708 |
+
ori_encoder_hidden_states = encoder_hidden_states.clone()
|
709 |
+
for i, block in enumerate(self.transformer_blocks):
|
710 |
+
hidden_states, encoder_hidden_states = block(
|
711 |
+
hidden_states=hidden_states,
|
712 |
+
encoder_hidden_states=encoder_hidden_states,
|
713 |
+
temb=emb,
|
714 |
+
image_rotary_emb=image_rotary_emb,
|
715 |
+
video_flow_feature=video_flow_features[i] if video_flow_features is not None else None,
|
716 |
+
fuser = self.fuser_list[i] if self.fuser_list is not None else None,
|
717 |
+
block_use_fastercache = i <= self.fastercache_num_blocks_to_cache,
|
718 |
+
fastercache_counter = self.fastercache_counter,
|
719 |
+
fastercache_start_step = self.fastercache_start_step,
|
720 |
+
fastercache_device = self.fastercache_device
|
721 |
+
)
|
722 |
+
|
723 |
+
#controlnet
|
724 |
+
if (controlnet_states is not None) and (i < len(controlnet_states)):
|
725 |
+
controlnet_states_block = controlnet_states[i]
|
726 |
+
controlnet_block_weight = 1.0
|
727 |
+
if isinstance(controlnet_weights, (list, np.ndarray)) or torch.is_tensor(controlnet_weights):
|
728 |
+
controlnet_block_weight = controlnet_weights[i]
|
729 |
+
print(controlnet_block_weight)
|
730 |
+
elif isinstance(controlnet_weights, (float, int)):
|
731 |
+
controlnet_block_weight = controlnet_weights
|
732 |
+
hidden_states = hidden_states + controlnet_states_block * controlnet_block_weight
|
733 |
+
|
734 |
+
if self.use_teacache:
|
735 |
+
self.previous_residual = hidden_states - ori_hidden_states
|
736 |
+
self.previous_residual_encoder = encoder_hidden_states - ori_encoder_hidden_states
|
737 |
+
|
738 |
+
if not self.config.use_rotary_positional_embeddings:
|
739 |
+
# CogVideoX-2B
|
740 |
+
hidden_states = self.norm_final(hidden_states)
|
741 |
+
else:
|
742 |
+
# CogVideoX-5B
|
743 |
+
hidden_states = torch.cat([encoder_hidden_states, hidden_states], dim=1)
|
744 |
+
hidden_states = self.norm_final(hidden_states)
|
745 |
+
hidden_states = hidden_states[:, text_seq_length:]
|
746 |
+
|
747 |
+
# 4. Final block
|
748 |
+
hidden_states = self.norm_out(hidden_states, temb=emb)
|
749 |
+
hidden_states = self.proj_out(hidden_states)
|
750 |
+
|
751 |
+
# 5. Unpatchify
|
752 |
+
# Note: we use `-1` instead of `channels`:
|
753 |
+
# - It is okay to `channels` use for CogVideoX-2b and CogVideoX-5b (number of input channels is equal to output channels)
|
754 |
+
# - However, for CogVideoX-5b-I2V also takes concatenated input image latents (number of input channels is twice the output channels)
|
755 |
+
|
756 |
+
if p_t is None:
|
757 |
+
output = hidden_states.reshape(batch_size, num_frames, height // p, width // p, -1, p, p)
|
758 |
+
output = output.permute(0, 1, 4, 2, 5, 3, 6).flatten(5, 6).flatten(3, 4)
|
759 |
+
else:
|
760 |
+
output = hidden_states.reshape(
|
761 |
+
batch_size, (num_frames + p_t - 1) // p_t, height // p, width // p, -1, p_t, p, p
|
762 |
+
)
|
763 |
+
output = output.permute(0, 1, 5, 4, 2, 6, 3, 7).flatten(6, 7).flatten(4, 5).flatten(1, 2)
|
764 |
+
|
765 |
+
if self.fastercache_counter >= self.fastercache_start_step + 1:
|
766 |
+
(bb, tt, cc, hh, ww) = output.shape
|
767 |
+
cond = rearrange(output[0:1].float(), "B T C H W -> (B T) C H W", B=bb//2, C=cc, T=tt, H=hh, W=ww)
|
768 |
+
uncond = rearrange(output[1:2].float(), "B T C H W -> (B T) C H W", B=bb//2, C=cc, T=tt, H=hh, W=ww)
|
769 |
+
|
770 |
+
lf_c, hf_c = fft(cond)
|
771 |
+
lf_uc, hf_uc = fft(uncond)
|
772 |
+
|
773 |
+
self.delta_lf = lf_uc - lf_c
|
774 |
+
self.delta_hf = hf_uc - hf_c
|
775 |
+
|
776 |
+
if not return_dict:
|
777 |
+
return (output,)
|
778 |
+
return Transformer2DModelOutput(sample=output)
|
779 |
+
|
custom_nodes/ComfyUI-CogVideoXWrapper/embeddings.py
ADDED
@@ -0,0 +1,226 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
import numpy as np
|
4 |
+
from typing import Tuple, Union, Optional
|
5 |
+
from diffusers.models.embeddings import get_3d_sincos_pos_embed, get_1d_rotary_pos_embed
|
6 |
+
|
7 |
+
|
8 |
+
class CogVideoXPatchEmbed(nn.Module):
|
9 |
+
def __init__(
|
10 |
+
self,
|
11 |
+
patch_size: int = 2,
|
12 |
+
patch_size_t: Optional[int] = None,
|
13 |
+
in_channels: int = 16,
|
14 |
+
embed_dim: int = 1920,
|
15 |
+
text_embed_dim: int = 4096,
|
16 |
+
bias: bool = True,
|
17 |
+
sample_width: int = 90,
|
18 |
+
sample_height: int = 60,
|
19 |
+
sample_frames: int = 49,
|
20 |
+
temporal_compression_ratio: int = 4,
|
21 |
+
max_text_seq_length: int = 226,
|
22 |
+
spatial_interpolation_scale: float = 1.875,
|
23 |
+
temporal_interpolation_scale: float = 1.0,
|
24 |
+
use_positional_embeddings: bool = True,
|
25 |
+
use_learned_positional_embeddings: bool = True,
|
26 |
+
) -> None:
|
27 |
+
super().__init__()
|
28 |
+
|
29 |
+
self.patch_size = patch_size
|
30 |
+
self.patch_size_t = patch_size_t
|
31 |
+
self.embed_dim = embed_dim
|
32 |
+
self.sample_height = sample_height
|
33 |
+
self.sample_width = sample_width
|
34 |
+
self.sample_frames = sample_frames
|
35 |
+
self.temporal_compression_ratio = temporal_compression_ratio
|
36 |
+
self.max_text_seq_length = max_text_seq_length
|
37 |
+
self.spatial_interpolation_scale = spatial_interpolation_scale
|
38 |
+
self.temporal_interpolation_scale = temporal_interpolation_scale
|
39 |
+
self.use_positional_embeddings = use_positional_embeddings
|
40 |
+
self.use_learned_positional_embeddings = use_learned_positional_embeddings
|
41 |
+
|
42 |
+
if patch_size_t is None:
|
43 |
+
# CogVideoX 1.0 checkpoints
|
44 |
+
self.proj = nn.Conv2d(
|
45 |
+
in_channels, embed_dim, kernel_size=(patch_size, patch_size), stride=patch_size, bias=bias
|
46 |
+
)
|
47 |
+
else:
|
48 |
+
# CogVideoX 1.5 checkpoints
|
49 |
+
self.proj = nn.Linear(in_channels * patch_size * patch_size * patch_size_t, embed_dim)
|
50 |
+
|
51 |
+
self.text_proj = nn.Linear(text_embed_dim, embed_dim)
|
52 |
+
|
53 |
+
if use_positional_embeddings or use_learned_positional_embeddings:
|
54 |
+
persistent = use_learned_positional_embeddings
|
55 |
+
pos_embedding = self._get_positional_embeddings(sample_height, sample_width, sample_frames)
|
56 |
+
self.register_buffer("pos_embedding", pos_embedding, persistent=persistent)
|
57 |
+
|
58 |
+
def _get_positional_embeddings(self, sample_height: int, sample_width: int, sample_frames: int) -> torch.Tensor:
|
59 |
+
post_patch_height = sample_height // self.patch_size
|
60 |
+
post_patch_width = sample_width // self.patch_size
|
61 |
+
post_time_compression_frames = (sample_frames - 1) // self.temporal_compression_ratio + 1
|
62 |
+
num_patches = post_patch_height * post_patch_width * post_time_compression_frames
|
63 |
+
|
64 |
+
pos_embedding = get_3d_sincos_pos_embed(
|
65 |
+
self.embed_dim,
|
66 |
+
(post_patch_width, post_patch_height),
|
67 |
+
post_time_compression_frames,
|
68 |
+
self.spatial_interpolation_scale,
|
69 |
+
self.temporal_interpolation_scale,
|
70 |
+
)
|
71 |
+
pos_embedding = torch.from_numpy(pos_embedding).flatten(0, 1)
|
72 |
+
joint_pos_embedding = torch.zeros(
|
73 |
+
1, self.max_text_seq_length + num_patches, self.embed_dim, requires_grad=False
|
74 |
+
)
|
75 |
+
joint_pos_embedding.data[:, self.max_text_seq_length :].copy_(pos_embedding)
|
76 |
+
|
77 |
+
return joint_pos_embedding
|
78 |
+
|
79 |
+
def forward(self, text_embeds: torch.Tensor, image_embeds: torch.Tensor):
|
80 |
+
r"""
|
81 |
+
Args:
|
82 |
+
text_embeds (`torch.Tensor`):
|
83 |
+
Input text embeddings. Expected shape: (batch_size, seq_length, embedding_dim).
|
84 |
+
image_embeds (`torch.Tensor`):
|
85 |
+
Input image embeddings. Expected shape: (batch_size, num_frames, channels, height, width).
|
86 |
+
"""
|
87 |
+
text_embeds = self.text_proj(text_embeds)
|
88 |
+
|
89 |
+
batch_size, num_frames, channels, height, width = image_embeds.shape
|
90 |
+
|
91 |
+
if self.patch_size_t is None:
|
92 |
+
image_embeds = image_embeds.reshape(-1, channels, height, width)
|
93 |
+
image_embeds = self.proj(image_embeds)
|
94 |
+
image_embeds = image_embeds.view(batch_size, num_frames, *image_embeds.shape[1:])
|
95 |
+
image_embeds = image_embeds.flatten(3).transpose(2, 3) # [batch, num_frames, height x width, channels]
|
96 |
+
image_embeds = image_embeds.flatten(1, 2) # [batch, num_frames x height x width, channels]
|
97 |
+
else:
|
98 |
+
p = self.patch_size
|
99 |
+
p_t = self.patch_size_t
|
100 |
+
|
101 |
+
image_embeds = image_embeds.permute(0, 1, 3, 4, 2)
|
102 |
+
image_embeds = image_embeds.reshape(
|
103 |
+
batch_size, num_frames // p_t, p_t, height // p, p, width // p, p, channels
|
104 |
+
)
|
105 |
+
image_embeds = image_embeds.permute(0, 1, 3, 5, 7, 2, 4, 6).flatten(4, 7).flatten(1, 3)
|
106 |
+
image_embeds = self.proj(image_embeds)
|
107 |
+
|
108 |
+
embeds = torch.cat(
|
109 |
+
[text_embeds, image_embeds], dim=1
|
110 |
+
).contiguous() # [batch, seq_length + num_frames x height x width, channels]
|
111 |
+
|
112 |
+
if self.use_positional_embeddings or self.use_learned_positional_embeddings:
|
113 |
+
if self.use_learned_positional_embeddings and (self.sample_width != width or self.sample_height != height):
|
114 |
+
raise ValueError(
|
115 |
+
"It is currently not possible to generate videos at a different resolution that the defaults. This should only be the case with 'THUDM/CogVideoX-5b-I2V'."
|
116 |
+
"If you think this is incorrect, please open an issue at https://github.com/huggingface/diffusers/issues."
|
117 |
+
)
|
118 |
+
|
119 |
+
pre_time_compression_frames = (num_frames - 1) * self.temporal_compression_ratio + 1
|
120 |
+
|
121 |
+
if (
|
122 |
+
self.sample_height != height
|
123 |
+
or self.sample_width != width
|
124 |
+
or self.sample_frames != pre_time_compression_frames
|
125 |
+
):
|
126 |
+
pos_embedding = self._get_positional_embeddings(height, width, pre_time_compression_frames)
|
127 |
+
pos_embedding = pos_embedding.to(embeds.device, dtype=embeds.dtype)
|
128 |
+
else:
|
129 |
+
pos_embedding = self.pos_embedding
|
130 |
+
|
131 |
+
embeds = embeds + pos_embedding
|
132 |
+
|
133 |
+
return embeds
|
134 |
+
|
135 |
+
def get_3d_rotary_pos_embed(
|
136 |
+
embed_dim,
|
137 |
+
crops_coords,
|
138 |
+
grid_size,
|
139 |
+
temporal_size,
|
140 |
+
theta: int = 10000,
|
141 |
+
use_real: bool = True,
|
142 |
+
grid_type: str = "linspace",
|
143 |
+
max_size: Optional[Tuple[int, int]] = None,
|
144 |
+
) -> Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]]:
|
145 |
+
"""
|
146 |
+
RoPE for video tokens with 3D structure.
|
147 |
+
|
148 |
+
Args:
|
149 |
+
embed_dim: (`int`):
|
150 |
+
The embedding dimension size, corresponding to hidden_size_head.
|
151 |
+
crops_coords (`Tuple[int]`):
|
152 |
+
The top-left and bottom-right coordinates of the crop.
|
153 |
+
grid_size (`Tuple[int]`):
|
154 |
+
The grid size of the spatial positional embedding (height, width).
|
155 |
+
temporal_size (`int`):
|
156 |
+
The size of the temporal dimension.
|
157 |
+
theta (`float`):
|
158 |
+
Scaling factor for frequency computation.
|
159 |
+
grid_type (`str`):
|
160 |
+
Whether to use "linspace" or "slice" to compute grids.
|
161 |
+
|
162 |
+
Returns:
|
163 |
+
`torch.Tensor`: positional embedding with shape `(temporal_size * grid_size[0] * grid_size[1], embed_dim/2)`.
|
164 |
+
"""
|
165 |
+
if use_real is not True:
|
166 |
+
raise ValueError(" `use_real = False` is not currently supported for get_3d_rotary_pos_embed")
|
167 |
+
|
168 |
+
if grid_type == "linspace":
|
169 |
+
start, stop = crops_coords
|
170 |
+
grid_size_h, grid_size_w = grid_size
|
171 |
+
grid_h = np.linspace(start[0], stop[0], grid_size_h, endpoint=False, dtype=np.float32)
|
172 |
+
grid_w = np.linspace(start[1], stop[1], grid_size_w, endpoint=False, dtype=np.float32)
|
173 |
+
grid_t = np.arange(temporal_size, dtype=np.float32)
|
174 |
+
grid_t = np.linspace(0, temporal_size, temporal_size, endpoint=False, dtype=np.float32)
|
175 |
+
elif grid_type == "slice":
|
176 |
+
max_h, max_w = max_size
|
177 |
+
grid_size_h, grid_size_w = grid_size
|
178 |
+
grid_h = np.arange(max_h, dtype=np.float32)
|
179 |
+
grid_w = np.arange(max_w, dtype=np.float32)
|
180 |
+
grid_t = np.arange(temporal_size, dtype=np.float32)
|
181 |
+
else:
|
182 |
+
raise ValueError("Invalid value passed for `grid_type`.")
|
183 |
+
|
184 |
+
# Compute dimensions for each axis
|
185 |
+
dim_t = embed_dim // 4
|
186 |
+
dim_h = embed_dim // 8 * 3
|
187 |
+
dim_w = embed_dim // 8 * 3
|
188 |
+
|
189 |
+
# Temporal frequencies
|
190 |
+
freqs_t = get_1d_rotary_pos_embed(dim_t, grid_t, use_real=True)
|
191 |
+
# Spatial frequencies for height and width
|
192 |
+
freqs_h = get_1d_rotary_pos_embed(dim_h, grid_h, use_real=True)
|
193 |
+
freqs_w = get_1d_rotary_pos_embed(dim_w, grid_w, use_real=True)
|
194 |
+
|
195 |
+
# BroadCast and concatenate temporal and spaial frequencie (height and width) into a 3d tensor
|
196 |
+
def combine_time_height_width(freqs_t, freqs_h, freqs_w):
|
197 |
+
freqs_t = freqs_t[:, None, None, :].expand(
|
198 |
+
-1, grid_size_h, grid_size_w, -1
|
199 |
+
) # temporal_size, grid_size_h, grid_size_w, dim_t
|
200 |
+
freqs_h = freqs_h[None, :, None, :].expand(
|
201 |
+
temporal_size, -1, grid_size_w, -1
|
202 |
+
) # temporal_size, grid_size_h, grid_size_2, dim_h
|
203 |
+
freqs_w = freqs_w[None, None, :, :].expand(
|
204 |
+
temporal_size, grid_size_h, -1, -1
|
205 |
+
) # temporal_size, grid_size_h, grid_size_2, dim_w
|
206 |
+
|
207 |
+
freqs = torch.cat(
|
208 |
+
[freqs_t, freqs_h, freqs_w], dim=-1
|
209 |
+
) # temporal_size, grid_size_h, grid_size_w, (dim_t + dim_h + dim_w)
|
210 |
+
freqs = freqs.view(
|
211 |
+
temporal_size * grid_size_h * grid_size_w, -1
|
212 |
+
) # (temporal_size * grid_size_h * grid_size_w), (dim_t + dim_h + dim_w)
|
213 |
+
return freqs
|
214 |
+
|
215 |
+
t_cos, t_sin = freqs_t # both t_cos and t_sin has shape: temporal_size, dim_t
|
216 |
+
h_cos, h_sin = freqs_h # both h_cos and h_sin has shape: grid_size_h, dim_h
|
217 |
+
w_cos, w_sin = freqs_w # both w_cos and w_sin has shape: grid_size_w, dim_w
|
218 |
+
|
219 |
+
if grid_type == "slice":
|
220 |
+
t_cos, t_sin = t_cos[:temporal_size], t_sin[:temporal_size]
|
221 |
+
h_cos, h_sin = h_cos[:grid_size_h], h_sin[:grid_size_h]
|
222 |
+
w_cos, w_sin = w_cos[:grid_size_w], w_sin[:grid_size_w]
|
223 |
+
|
224 |
+
cos = combine_time_height_width(t_cos, h_cos, w_cos)
|
225 |
+
sin = combine_time_height_width(t_sin, h_sin, w_sin)
|
226 |
+
return cos, sin
|
custom_nodes/ComfyUI-CogVideoXWrapper/enhance_a_video/__init__.py
ADDED
File without changes
|
custom_nodes/ComfyUI-CogVideoXWrapper/enhance_a_video/__pycache__/__init__.cpython-311.pyc
ADDED
Binary file (205 Bytes). View file
|
|
custom_nodes/ComfyUI-CogVideoXWrapper/enhance_a_video/__pycache__/__init__.cpython-312.pyc
ADDED
Binary file (251 Bytes). View file
|
|
custom_nodes/ComfyUI-CogVideoXWrapper/enhance_a_video/__pycache__/enhance.cpython-311.pyc
ADDED
Binary file (2.81 kB). View file
|
|
custom_nodes/ComfyUI-CogVideoXWrapper/enhance_a_video/__pycache__/enhance.cpython-312.pyc
ADDED
Binary file (2.63 kB). View file
|
|
custom_nodes/ComfyUI-CogVideoXWrapper/enhance_a_video/__pycache__/globals.cpython-311.pyc
ADDED
Binary file (1.36 kB). View file
|
|
custom_nodes/ComfyUI-CogVideoXWrapper/enhance_a_video/__pycache__/globals.cpython-312.pyc
ADDED
Binary file (1.28 kB). View file
|
|
custom_nodes/ComfyUI-CogVideoXWrapper/enhance_a_video/enhance.py
ADDED
@@ -0,0 +1,82 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from einops import rearrange
|
3 |
+
from diffusers.models.attention import Attention
|
4 |
+
from .globals import get_enhance_weight, get_num_frames
|
5 |
+
|
6 |
+
# def get_feta_scores(query, key):
|
7 |
+
# img_q, img_k = query, key
|
8 |
+
|
9 |
+
# num_frames = get_num_frames()
|
10 |
+
|
11 |
+
# B, S, N, C = img_q.shape
|
12 |
+
|
13 |
+
# # Calculate spatial dimension
|
14 |
+
# spatial_dim = S // num_frames
|
15 |
+
|
16 |
+
# # Add time dimension between spatial and head dims
|
17 |
+
# query_image = img_q.reshape(B, spatial_dim, num_frames, N, C)
|
18 |
+
# key_image = img_k.reshape(B, spatial_dim, num_frames, N, C)
|
19 |
+
|
20 |
+
# # Expand time dimension
|
21 |
+
# query_image = query_image.expand(-1, -1, num_frames, -1, -1) # [B, S, T, N, C]
|
22 |
+
# key_image = key_image.expand(-1, -1, num_frames, -1, -1) # [B, S, T, N, C]
|
23 |
+
|
24 |
+
# # Reshape to match feta_score input format: [(B S) N T C]
|
25 |
+
# query_image = rearrange(query_image, "b s t n c -> (b s) n t c") #torch.Size([3200, 24, 5, 128])
|
26 |
+
# key_image = rearrange(key_image, "b s t n c -> (b s) n t c")
|
27 |
+
|
28 |
+
# return feta_score(query_image, key_image, C, num_frames)
|
29 |
+
|
30 |
+
def get_feta_scores(
|
31 |
+
attn: Attention,
|
32 |
+
query: torch.Tensor,
|
33 |
+
key: torch.Tensor,
|
34 |
+
head_dim: int,
|
35 |
+
text_seq_length: int,
|
36 |
+
) -> torch.Tensor:
|
37 |
+
num_frames = get_num_frames()
|
38 |
+
spatial_dim = int((query.shape[2] - text_seq_length) / num_frames)
|
39 |
+
|
40 |
+
query_image = rearrange(
|
41 |
+
query[:, :, text_seq_length:],
|
42 |
+
"B N (T S) C -> (B S) N T C",
|
43 |
+
N=attn.heads,
|
44 |
+
T=num_frames,
|
45 |
+
S=spatial_dim,
|
46 |
+
C=head_dim,
|
47 |
+
)
|
48 |
+
key_image = rearrange(
|
49 |
+
key[:, :, text_seq_length:],
|
50 |
+
"B N (T S) C -> (B S) N T C",
|
51 |
+
N=attn.heads,
|
52 |
+
T=num_frames,
|
53 |
+
S=spatial_dim,
|
54 |
+
C=head_dim,
|
55 |
+
)
|
56 |
+
return feta_score(query_image, key_image, head_dim, num_frames)
|
57 |
+
|
58 |
+
def feta_score(query_image, key_image, head_dim, num_frames):
|
59 |
+
scale = head_dim**-0.5
|
60 |
+
query_image = query_image * scale
|
61 |
+
attn_temp = query_image @ key_image.transpose(-2, -1) # translate attn to float32
|
62 |
+
attn_temp = attn_temp.to(torch.float32)
|
63 |
+
attn_temp = attn_temp.softmax(dim=-1)
|
64 |
+
|
65 |
+
# Reshape to [batch_size * num_tokens, num_frames, num_frames]
|
66 |
+
attn_temp = attn_temp.reshape(-1, num_frames, num_frames)
|
67 |
+
|
68 |
+
# Create a mask for diagonal elements
|
69 |
+
diag_mask = torch.eye(num_frames, device=attn_temp.device).bool()
|
70 |
+
diag_mask = diag_mask.unsqueeze(0).expand(attn_temp.shape[0], -1, -1)
|
71 |
+
|
72 |
+
# Zero out diagonal elements
|
73 |
+
attn_wo_diag = attn_temp.masked_fill(diag_mask, 0)
|
74 |
+
|
75 |
+
# Calculate mean for each token's attention matrix
|
76 |
+
# Number of off-diagonal elements per matrix is n*n - n
|
77 |
+
num_off_diag = num_frames * num_frames - num_frames
|
78 |
+
mean_scores = attn_wo_diag.sum(dim=(1, 2)) / num_off_diag
|
79 |
+
|
80 |
+
enhance_scores = mean_scores.mean() * (num_frames + get_enhance_weight())
|
81 |
+
enhance_scores = enhance_scores.clamp(min=1)
|
82 |
+
return enhance_scores
|
custom_nodes/ComfyUI-CogVideoXWrapper/enhance_a_video/globals.py
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
NUM_FRAMES = None
|
2 |
+
FETA_WEIGHT = None
|
3 |
+
ENABLE_FETA = False
|
4 |
+
|
5 |
+
def set_num_frames(num_frames: int):
|
6 |
+
global NUM_FRAMES
|
7 |
+
NUM_FRAMES = num_frames
|
8 |
+
|
9 |
+
|
10 |
+
def get_num_frames() -> int:
|
11 |
+
return NUM_FRAMES
|
12 |
+
|
13 |
+
|
14 |
+
def enable_enhance():
|
15 |
+
global ENABLE_FETA
|
16 |
+
ENABLE_FETA = True
|
17 |
+
|
18 |
+
def disable_enhance():
|
19 |
+
global ENABLE_FETA
|
20 |
+
ENABLE_FETA = False
|
21 |
+
|
22 |
+
def is_enhance_enabled() -> bool:
|
23 |
+
return ENABLE_FETA
|
24 |
+
|
25 |
+
def set_enhance_weight(feta_weight: float):
|
26 |
+
global FETA_WEIGHT
|
27 |
+
FETA_WEIGHT = feta_weight
|
28 |
+
|
29 |
+
|
30 |
+
def get_enhance_weight() -> float:
|
31 |
+
return FETA_WEIGHT
|
custom_nodes/ComfyUI-CogVideoXWrapper/example_workflows/cogvideox_1.0_5b_vid2vid_02.json
ADDED
@@ -0,0 +1,1061 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"last_node_id": 78,
|
3 |
+
"last_link_id": 218,
|
4 |
+
"nodes": [
|
5 |
+
{
|
6 |
+
"id": 20,
|
7 |
+
"type": "CLIPLoader",
|
8 |
+
"pos": {
|
9 |
+
"0": -29,
|
10 |
+
"1": 407
|
11 |
+
},
|
12 |
+
"size": {
|
13 |
+
"0": 451.30548095703125,
|
14 |
+
"1": 82
|
15 |
+
},
|
16 |
+
"flags": {},
|
17 |
+
"order": 0,
|
18 |
+
"mode": 0,
|
19 |
+
"inputs": [],
|
20 |
+
"outputs": [
|
21 |
+
{
|
22 |
+
"name": "CLIP",
|
23 |
+
"type": "CLIP",
|
24 |
+
"links": [
|
25 |
+
54
|
26 |
+
],
|
27 |
+
"slot_index": 0,
|
28 |
+
"shape": 3
|
29 |
+
}
|
30 |
+
],
|
31 |
+
"properties": {
|
32 |
+
"Node name for S&R": "CLIPLoader"
|
33 |
+
},
|
34 |
+
"widgets_values": [
|
35 |
+
"t5\\google_t5-v1_1-xxl_encoderonly-fp8_e4m3fn.safetensors",
|
36 |
+
"sd3"
|
37 |
+
]
|
38 |
+
},
|
39 |
+
{
|
40 |
+
"id": 41,
|
41 |
+
"type": "ImageResizeKJ",
|
42 |
+
"pos": {
|
43 |
+
"0": 206,
|
44 |
+
"1": -69
|
45 |
+
},
|
46 |
+
"size": {
|
47 |
+
"0": 315,
|
48 |
+
"1": 242
|
49 |
+
},
|
50 |
+
"flags": {},
|
51 |
+
"order": 7,
|
52 |
+
"mode": 0,
|
53 |
+
"inputs": [
|
54 |
+
{
|
55 |
+
"name": "image",
|
56 |
+
"type": "IMAGE",
|
57 |
+
"link": 180
|
58 |
+
},
|
59 |
+
{
|
60 |
+
"name": "get_image_size",
|
61 |
+
"type": "IMAGE",
|
62 |
+
"link": null,
|
63 |
+
"shape": 7
|
64 |
+
},
|
65 |
+
{
|
66 |
+
"name": "width_input",
|
67 |
+
"type": "INT",
|
68 |
+
"link": null,
|
69 |
+
"widget": {
|
70 |
+
"name": "width_input"
|
71 |
+
}
|
72 |
+
},
|
73 |
+
{
|
74 |
+
"name": "height_input",
|
75 |
+
"type": "INT",
|
76 |
+
"link": null,
|
77 |
+
"widget": {
|
78 |
+
"name": "height_input"
|
79 |
+
}
|
80 |
+
}
|
81 |
+
],
|
82 |
+
"outputs": [
|
83 |
+
{
|
84 |
+
"name": "IMAGE",
|
85 |
+
"type": "IMAGE",
|
86 |
+
"links": [
|
87 |
+
126
|
88 |
+
],
|
89 |
+
"slot_index": 0,
|
90 |
+
"shape": 3
|
91 |
+
},
|
92 |
+
{
|
93 |
+
"name": "width",
|
94 |
+
"type": "INT",
|
95 |
+
"links": null,
|
96 |
+
"shape": 3
|
97 |
+
},
|
98 |
+
{
|
99 |
+
"name": "height",
|
100 |
+
"type": "INT",
|
101 |
+
"links": null,
|
102 |
+
"shape": 3
|
103 |
+
}
|
104 |
+
],
|
105 |
+
"properties": {
|
106 |
+
"Node name for S&R": "ImageResizeKJ"
|
107 |
+
},
|
108 |
+
"widgets_values": [
|
109 |
+
720,
|
110 |
+
480,
|
111 |
+
"lanczos",
|
112 |
+
false,
|
113 |
+
2,
|
114 |
+
0,
|
115 |
+
0,
|
116 |
+
"disabled"
|
117 |
+
]
|
118 |
+
},
|
119 |
+
{
|
120 |
+
"id": 45,
|
121 |
+
"type": "VHS_LoadVideo",
|
122 |
+
"pos": {
|
123 |
+
"0": -93,
|
124 |
+
"1": -153
|
125 |
+
},
|
126 |
+
"size": [
|
127 |
+
247.455078125,
|
128 |
+
365.7275390625
|
129 |
+
],
|
130 |
+
"flags": {},
|
131 |
+
"order": 4,
|
132 |
+
"mode": 0,
|
133 |
+
"inputs": [
|
134 |
+
{
|
135 |
+
"name": "meta_batch",
|
136 |
+
"type": "VHS_BatchManager",
|
137 |
+
"link": null,
|
138 |
+
"shape": 7
|
139 |
+
},
|
140 |
+
{
|
141 |
+
"name": "vae",
|
142 |
+
"type": "VAE",
|
143 |
+
"link": null,
|
144 |
+
"shape": 7
|
145 |
+
},
|
146 |
+
{
|
147 |
+
"name": "frame_load_cap",
|
148 |
+
"type": "INT",
|
149 |
+
"link": 177,
|
150 |
+
"widget": {
|
151 |
+
"name": "frame_load_cap"
|
152 |
+
}
|
153 |
+
}
|
154 |
+
],
|
155 |
+
"outputs": [
|
156 |
+
{
|
157 |
+
"name": "IMAGE",
|
158 |
+
"type": "IMAGE",
|
159 |
+
"links": [
|
160 |
+
179
|
161 |
+
],
|
162 |
+
"slot_index": 0,
|
163 |
+
"shape": 3
|
164 |
+
},
|
165 |
+
{
|
166 |
+
"name": "frame_count",
|
167 |
+
"type": "INT",
|
168 |
+
"links": null,
|
169 |
+
"shape": 3
|
170 |
+
},
|
171 |
+
{
|
172 |
+
"name": "audio",
|
173 |
+
"type": "AUDIO",
|
174 |
+
"links": null,
|
175 |
+
"shape": 3
|
176 |
+
},
|
177 |
+
{
|
178 |
+
"name": "video_info",
|
179 |
+
"type": "VHS_VIDEOINFO",
|
180 |
+
"links": null,
|
181 |
+
"shape": 3
|
182 |
+
}
|
183 |
+
],
|
184 |
+
"properties": {
|
185 |
+
"Node name for S&R": "VHS_LoadVideo"
|
186 |
+
},
|
187 |
+
"widgets_values": {
|
188 |
+
"video": "jeep.mp4",
|
189 |
+
"force_rate": 0,
|
190 |
+
"force_size": "Disabled",
|
191 |
+
"custom_width": 512,
|
192 |
+
"custom_height": 512,
|
193 |
+
"frame_load_cap": 20,
|
194 |
+
"skip_first_frames": 0,
|
195 |
+
"select_every_nth": 1,
|
196 |
+
"choose video to upload": "image",
|
197 |
+
"videopreview": {
|
198 |
+
"hidden": false,
|
199 |
+
"paused": false,
|
200 |
+
"params": {
|
201 |
+
"frame_load_cap": 20,
|
202 |
+
"skip_first_frames": 0,
|
203 |
+
"force_rate": 0,
|
204 |
+
"filename": "jeep.mp4",
|
205 |
+
"type": "input",
|
206 |
+
"format": "video/mp4",
|
207 |
+
"select_every_nth": 1
|
208 |
+
}
|
209 |
+
}
|
210 |
+
}
|
211 |
+
},
|
212 |
+
{
|
213 |
+
"id": 70,
|
214 |
+
"type": "GetImageSizeAndCount",
|
215 |
+
"pos": {
|
216 |
+
"0": 214,
|
217 |
+
"1": -234
|
218 |
+
},
|
219 |
+
"size": {
|
220 |
+
"0": 202.2143096923828,
|
221 |
+
"1": 99.23601531982422
|
222 |
+
},
|
223 |
+
"flags": {},
|
224 |
+
"order": 6,
|
225 |
+
"mode": 0,
|
226 |
+
"inputs": [
|
227 |
+
{
|
228 |
+
"name": "image",
|
229 |
+
"type": "IMAGE",
|
230 |
+
"link": 179,
|
231 |
+
"slot_index": 0
|
232 |
+
}
|
233 |
+
],
|
234 |
+
"outputs": [
|
235 |
+
{
|
236 |
+
"name": "image",
|
237 |
+
"type": "IMAGE",
|
238 |
+
"links": [
|
239 |
+
180
|
240 |
+
],
|
241 |
+
"slot_index": 0,
|
242 |
+
"shape": 3
|
243 |
+
},
|
244 |
+
{
|
245 |
+
"name": "512 width",
|
246 |
+
"type": "INT",
|
247 |
+
"links": [],
|
248 |
+
"slot_index": 1,
|
249 |
+
"shape": 3
|
250 |
+
},
|
251 |
+
{
|
252 |
+
"name": "256 height",
|
253 |
+
"type": "INT",
|
254 |
+
"links": [],
|
255 |
+
"slot_index": 2,
|
256 |
+
"shape": 3
|
257 |
+
},
|
258 |
+
{
|
259 |
+
"name": "33 count",
|
260 |
+
"type": "INT",
|
261 |
+
"links": [],
|
262 |
+
"slot_index": 3,
|
263 |
+
"shape": 3
|
264 |
+
}
|
265 |
+
],
|
266 |
+
"properties": {
|
267 |
+
"Node name for S&R": "GetImageSizeAndCount"
|
268 |
+
},
|
269 |
+
"widgets_values": []
|
270 |
+
},
|
271 |
+
{
|
272 |
+
"id": 69,
|
273 |
+
"type": "INTConstant",
|
274 |
+
"pos": {
|
275 |
+
"0": -90,
|
276 |
+
"1": -305
|
277 |
+
},
|
278 |
+
"size": {
|
279 |
+
"0": 210,
|
280 |
+
"1": 58
|
281 |
+
},
|
282 |
+
"flags": {},
|
283 |
+
"order": 1,
|
284 |
+
"mode": 0,
|
285 |
+
"inputs": [],
|
286 |
+
"outputs": [
|
287 |
+
{
|
288 |
+
"name": "value",
|
289 |
+
"type": "INT",
|
290 |
+
"links": [
|
291 |
+
177
|
292 |
+
],
|
293 |
+
"shape": 3
|
294 |
+
}
|
295 |
+
],
|
296 |
+
"title": "Frames to load",
|
297 |
+
"properties": {
|
298 |
+
"Node name for S&R": "INTConstant"
|
299 |
+
},
|
300 |
+
"widgets_values": [
|
301 |
+
33
|
302 |
+
],
|
303 |
+
"color": "#1b4669",
|
304 |
+
"bgcolor": "#29699c"
|
305 |
+
},
|
306 |
+
{
|
307 |
+
"id": 58,
|
308 |
+
"type": "ImageConcanate",
|
309 |
+
"pos": {
|
310 |
+
"0": 1594,
|
311 |
+
"1": 230
|
312 |
+
},
|
313 |
+
"size": {
|
314 |
+
"0": 315,
|
315 |
+
"1": 102
|
316 |
+
},
|
317 |
+
"flags": {},
|
318 |
+
"order": 13,
|
319 |
+
"mode": 0,
|
320 |
+
"inputs": [
|
321 |
+
{
|
322 |
+
"name": "image1",
|
323 |
+
"type": "IMAGE",
|
324 |
+
"link": 191
|
325 |
+
},
|
326 |
+
{
|
327 |
+
"name": "image2",
|
328 |
+
"type": "IMAGE",
|
329 |
+
"link": 170
|
330 |
+
}
|
331 |
+
],
|
332 |
+
"outputs": [
|
333 |
+
{
|
334 |
+
"name": "IMAGE",
|
335 |
+
"type": "IMAGE",
|
336 |
+
"links": [
|
337 |
+
132
|
338 |
+
],
|
339 |
+
"slot_index": 0,
|
340 |
+
"shape": 3
|
341 |
+
}
|
342 |
+
],
|
343 |
+
"properties": {
|
344 |
+
"Node name for S&R": "ImageConcanate"
|
345 |
+
},
|
346 |
+
"widgets_values": [
|
347 |
+
"right",
|
348 |
+
false
|
349 |
+
]
|
350 |
+
},
|
351 |
+
{
|
352 |
+
"id": 55,
|
353 |
+
"type": "GetImageSizeAndCount",
|
354 |
+
"pos": {
|
355 |
+
"0": 1654,
|
356 |
+
"1": 77
|
357 |
+
},
|
358 |
+
"size": {
|
359 |
+
"0": 210,
|
360 |
+
"1": 86
|
361 |
+
},
|
362 |
+
"flags": {},
|
363 |
+
"order": 12,
|
364 |
+
"mode": 0,
|
365 |
+
"inputs": [
|
366 |
+
{
|
367 |
+
"name": "image",
|
368 |
+
"type": "IMAGE",
|
369 |
+
"link": 208,
|
370 |
+
"slot_index": 0
|
371 |
+
}
|
372 |
+
],
|
373 |
+
"outputs": [
|
374 |
+
{
|
375 |
+
"name": "image",
|
376 |
+
"type": "IMAGE",
|
377 |
+
"links": [
|
378 |
+
170
|
379 |
+
],
|
380 |
+
"slot_index": 0,
|
381 |
+
"shape": 3
|
382 |
+
},
|
383 |
+
{
|
384 |
+
"name": "720 width",
|
385 |
+
"type": "INT",
|
386 |
+
"links": null,
|
387 |
+
"shape": 3
|
388 |
+
},
|
389 |
+
{
|
390 |
+
"name": "480 height",
|
391 |
+
"type": "INT",
|
392 |
+
"links": null,
|
393 |
+
"shape": 3
|
394 |
+
},
|
395 |
+
{
|
396 |
+
"name": "33 count",
|
397 |
+
"type": "INT",
|
398 |
+
"links": [],
|
399 |
+
"slot_index": 3,
|
400 |
+
"shape": 3
|
401 |
+
}
|
402 |
+
],
|
403 |
+
"properties": {
|
404 |
+
"Node name for S&R": "GetImageSizeAndCount"
|
405 |
+
},
|
406 |
+
"widgets_values": []
|
407 |
+
},
|
408 |
+
{
|
409 |
+
"id": 77,
|
410 |
+
"type": "CogVideoImageEncode",
|
411 |
+
"pos": {
|
412 |
+
"0": 952,
|
413 |
+
"1": -118
|
414 |
+
},
|
415 |
+
"size": {
|
416 |
+
"0": 315,
|
417 |
+
"1": 122
|
418 |
+
},
|
419 |
+
"flags": {},
|
420 |
+
"order": 9,
|
421 |
+
"mode": 0,
|
422 |
+
"inputs": [
|
423 |
+
{
|
424 |
+
"name": "vae",
|
425 |
+
"type": "VAE",
|
426 |
+
"link": 209
|
427 |
+
},
|
428 |
+
{
|
429 |
+
"name": "start_image",
|
430 |
+
"type": "IMAGE",
|
431 |
+
"link": 210
|
432 |
+
},
|
433 |
+
{
|
434 |
+
"name": "end_image",
|
435 |
+
"type": "IMAGE",
|
436 |
+
"link": null,
|
437 |
+
"shape": 7
|
438 |
+
}
|
439 |
+
],
|
440 |
+
"outputs": [
|
441 |
+
{
|
442 |
+
"name": "samples",
|
443 |
+
"type": "LATENT",
|
444 |
+
"links": [
|
445 |
+
215
|
446 |
+
]
|
447 |
+
}
|
448 |
+
],
|
449 |
+
"properties": {
|
450 |
+
"Node name for S&R": "CogVideoImageEncode"
|
451 |
+
},
|
452 |
+
"widgets_values": [
|
453 |
+
false,
|
454 |
+
0
|
455 |
+
]
|
456 |
+
},
|
457 |
+
{
|
458 |
+
"id": 76,
|
459 |
+
"type": "CogVideoDecode",
|
460 |
+
"pos": {
|
461 |
+
"0": 1335,
|
462 |
+
"1": -123
|
463 |
+
},
|
464 |
+
"size": {
|
465 |
+
"0": 315,
|
466 |
+
"1": 198
|
467 |
+
},
|
468 |
+
"flags": {},
|
469 |
+
"order": 11,
|
470 |
+
"mode": 0,
|
471 |
+
"inputs": [
|
472 |
+
{
|
473 |
+
"name": "vae",
|
474 |
+
"type": "VAE",
|
475 |
+
"link": 206
|
476 |
+
},
|
477 |
+
{
|
478 |
+
"name": "samples",
|
479 |
+
"type": "LATENT",
|
480 |
+
"link": 216
|
481 |
+
}
|
482 |
+
],
|
483 |
+
"outputs": [
|
484 |
+
{
|
485 |
+
"name": "images",
|
486 |
+
"type": "IMAGE",
|
487 |
+
"links": [
|
488 |
+
208
|
489 |
+
]
|
490 |
+
}
|
491 |
+
],
|
492 |
+
"properties": {
|
493 |
+
"Node name for S&R": "CogVideoDecode"
|
494 |
+
},
|
495 |
+
"widgets_values": [
|
496 |
+
true,
|
497 |
+
240,
|
498 |
+
360,
|
499 |
+
0.2,
|
500 |
+
0.2,
|
501 |
+
true
|
502 |
+
]
|
503 |
+
},
|
504 |
+
{
|
505 |
+
"id": 30,
|
506 |
+
"type": "CogVideoTextEncode",
|
507 |
+
"pos": {
|
508 |
+
"0": 491,
|
509 |
+
"1": 372
|
510 |
+
},
|
511 |
+
"size": [
|
512 |
+
478.6890949595422,
|
513 |
+
215.66308749666905
|
514 |
+
],
|
515 |
+
"flags": {},
|
516 |
+
"order": 3,
|
517 |
+
"mode": 0,
|
518 |
+
"inputs": [
|
519 |
+
{
|
520 |
+
"name": "clip",
|
521 |
+
"type": "CLIP",
|
522 |
+
"link": 54
|
523 |
+
}
|
524 |
+
],
|
525 |
+
"outputs": [
|
526 |
+
{
|
527 |
+
"name": "conditioning",
|
528 |
+
"type": "CONDITIONING",
|
529 |
+
"links": [
|
530 |
+
213
|
531 |
+
],
|
532 |
+
"slot_index": 0,
|
533 |
+
"shape": 3
|
534 |
+
},
|
535 |
+
{
|
536 |
+
"name": "clip",
|
537 |
+
"type": "CLIP",
|
538 |
+
"links": [
|
539 |
+
217
|
540 |
+
],
|
541 |
+
"slot_index": 1
|
542 |
+
}
|
543 |
+
],
|
544 |
+
"properties": {
|
545 |
+
"Node name for S&R": "CogVideoTextEncode"
|
546 |
+
},
|
547 |
+
"widgets_values": [
|
548 |
+
"A high-definition nature video showcasing a brown bear as it gracefully runs down a crystal-clear stream, surrounded by the serene ambiance of a dense, verdant forest. The sunlight filters through the canopy of tall trees, casting dappled light on the forest floor, while the gentle sound of flowing water and rustling leaves creates a peaceful atmosphere. The brown bear's fur glistens in the sunlight, highlighting its striking red and white markings as it navigates the stream with agility and playfulness.",
|
549 |
+
1,
|
550 |
+
false
|
551 |
+
]
|
552 |
+
},
|
553 |
+
{
|
554 |
+
"id": 31,
|
555 |
+
"type": "CogVideoTextEncode",
|
556 |
+
"pos": {
|
557 |
+
"0": 504,
|
558 |
+
"1": 651
|
559 |
+
},
|
560 |
+
"size": {
|
561 |
+
"0": 463.01251220703125,
|
562 |
+
"1": 144
|
563 |
+
},
|
564 |
+
"flags": {},
|
565 |
+
"order": 5,
|
566 |
+
"mode": 0,
|
567 |
+
"inputs": [
|
568 |
+
{
|
569 |
+
"name": "clip",
|
570 |
+
"type": "CLIP",
|
571 |
+
"link": 217
|
572 |
+
}
|
573 |
+
],
|
574 |
+
"outputs": [
|
575 |
+
{
|
576 |
+
"name": "conditioning",
|
577 |
+
"type": "CONDITIONING",
|
578 |
+
"links": [
|
579 |
+
214
|
580 |
+
],
|
581 |
+
"slot_index": 0,
|
582 |
+
"shape": 3
|
583 |
+
},
|
584 |
+
{
|
585 |
+
"name": "clip",
|
586 |
+
"type": "CLIP",
|
587 |
+
"links": null
|
588 |
+
}
|
589 |
+
],
|
590 |
+
"properties": {
|
591 |
+
"Node name for S&R": "CogVideoTextEncode"
|
592 |
+
},
|
593 |
+
"widgets_values": [
|
594 |
+
"",
|
595 |
+
1,
|
596 |
+
true
|
597 |
+
]
|
598 |
+
},
|
599 |
+
{
|
600 |
+
"id": 78,
|
601 |
+
"type": "CogVideoSampler",
|
602 |
+
"pos": {
|
603 |
+
"0": 1083,
|
604 |
+
"1": 255
|
605 |
+
},
|
606 |
+
"size": [
|
607 |
+
330,
|
608 |
+
574
|
609 |
+
],
|
610 |
+
"flags": {},
|
611 |
+
"order": 10,
|
612 |
+
"mode": 0,
|
613 |
+
"inputs": [
|
614 |
+
{
|
615 |
+
"name": "model",
|
616 |
+
"type": "COGVIDEOMODEL",
|
617 |
+
"link": 212
|
618 |
+
},
|
619 |
+
{
|
620 |
+
"name": "positive",
|
621 |
+
"type": "CONDITIONING",
|
622 |
+
"link": 213
|
623 |
+
},
|
624 |
+
{
|
625 |
+
"name": "negative",
|
626 |
+
"type": "CONDITIONING",
|
627 |
+
"link": 214
|
628 |
+
},
|
629 |
+
{
|
630 |
+
"name": "samples",
|
631 |
+
"type": "LATENT",
|
632 |
+
"link": 215,
|
633 |
+
"shape": 7
|
634 |
+
},
|
635 |
+
{
|
636 |
+
"name": "image_cond_latents",
|
637 |
+
"type": "LATENT",
|
638 |
+
"link": null,
|
639 |
+
"shape": 7
|
640 |
+
},
|
641 |
+
{
|
642 |
+
"name": "context_options",
|
643 |
+
"type": "COGCONTEXT",
|
644 |
+
"link": null,
|
645 |
+
"shape": 7
|
646 |
+
},
|
647 |
+
{
|
648 |
+
"name": "controlnet",
|
649 |
+
"type": "COGVIDECONTROLNET",
|
650 |
+
"link": null,
|
651 |
+
"shape": 7
|
652 |
+
},
|
653 |
+
{
|
654 |
+
"name": "tora_trajectory",
|
655 |
+
"type": "TORAFEATURES",
|
656 |
+
"link": null,
|
657 |
+
"shape": 7
|
658 |
+
},
|
659 |
+
{
|
660 |
+
"name": "fastercache",
|
661 |
+
"type": "FASTERCACHEARGS",
|
662 |
+
"link": null,
|
663 |
+
"shape": 7
|
664 |
+
},
|
665 |
+
{
|
666 |
+
"name": "num_frames",
|
667 |
+
"type": "INT",
|
668 |
+
"link": 218,
|
669 |
+
"widget": {
|
670 |
+
"name": "num_frames"
|
671 |
+
}
|
672 |
+
}
|
673 |
+
],
|
674 |
+
"outputs": [
|
675 |
+
{
|
676 |
+
"name": "samples",
|
677 |
+
"type": "LATENT",
|
678 |
+
"links": [
|
679 |
+
216
|
680 |
+
]
|
681 |
+
}
|
682 |
+
],
|
683 |
+
"properties": {
|
684 |
+
"Node name for S&R": "CogVideoSampler"
|
685 |
+
},
|
686 |
+
"widgets_values": [
|
687 |
+
49,
|
688 |
+
25,
|
689 |
+
6,
|
690 |
+
0,
|
691 |
+
"fixed",
|
692 |
+
"CogVideoXDDIM",
|
693 |
+
0.8
|
694 |
+
]
|
695 |
+
},
|
696 |
+
{
|
697 |
+
"id": 57,
|
698 |
+
"type": "GetImageSizeAndCount",
|
699 |
+
"pos": {
|
700 |
+
"0": 595,
|
701 |
+
"1": -79
|
702 |
+
},
|
703 |
+
"size": {
|
704 |
+
"0": 202.2143096923828,
|
705 |
+
"1": 99.23601531982422
|
706 |
+
},
|
707 |
+
"flags": {},
|
708 |
+
"order": 8,
|
709 |
+
"mode": 0,
|
710 |
+
"inputs": [
|
711 |
+
{
|
712 |
+
"name": "image",
|
713 |
+
"type": "IMAGE",
|
714 |
+
"link": 126,
|
715 |
+
"slot_index": 0
|
716 |
+
}
|
717 |
+
],
|
718 |
+
"outputs": [
|
719 |
+
{
|
720 |
+
"name": "image",
|
721 |
+
"type": "IMAGE",
|
722 |
+
"links": [
|
723 |
+
191,
|
724 |
+
210
|
725 |
+
],
|
726 |
+
"slot_index": 0,
|
727 |
+
"shape": 3
|
728 |
+
},
|
729 |
+
{
|
730 |
+
"name": "720 width",
|
731 |
+
"type": "INT",
|
732 |
+
"links": [],
|
733 |
+
"slot_index": 1,
|
734 |
+
"shape": 3
|
735 |
+
},
|
736 |
+
{
|
737 |
+
"name": "480 height",
|
738 |
+
"type": "INT",
|
739 |
+
"links": [],
|
740 |
+
"slot_index": 2,
|
741 |
+
"shape": 3
|
742 |
+
},
|
743 |
+
{
|
744 |
+
"name": "33 count",
|
745 |
+
"type": "INT",
|
746 |
+
"links": [
|
747 |
+
218
|
748 |
+
],
|
749 |
+
"slot_index": 3,
|
750 |
+
"shape": 3
|
751 |
+
}
|
752 |
+
],
|
753 |
+
"properties": {
|
754 |
+
"Node name for S&R": "GetImageSizeAndCount"
|
755 |
+
},
|
756 |
+
"widgets_values": []
|
757 |
+
},
|
758 |
+
{
|
759 |
+
"id": 75,
|
760 |
+
"type": "DownloadAndLoadCogVideoModel",
|
761 |
+
"pos": {
|
762 |
+
"0": 606,
|
763 |
+
"1": 85
|
764 |
+
},
|
765 |
+
"size": {
|
766 |
+
"0": 315,
|
767 |
+
"1": 218
|
768 |
+
},
|
769 |
+
"flags": {},
|
770 |
+
"order": 2,
|
771 |
+
"mode": 0,
|
772 |
+
"inputs": [
|
773 |
+
{
|
774 |
+
"name": "block_edit",
|
775 |
+
"type": "TRANSFORMERBLOCKS",
|
776 |
+
"link": null,
|
777 |
+
"shape": 7
|
778 |
+
},
|
779 |
+
{
|
780 |
+
"name": "lora",
|
781 |
+
"type": "COGLORA",
|
782 |
+
"link": null,
|
783 |
+
"shape": 7
|
784 |
+
},
|
785 |
+
{
|
786 |
+
"name": "compile_args",
|
787 |
+
"type": "COMPILEARGS",
|
788 |
+
"link": null,
|
789 |
+
"shape": 7
|
790 |
+
}
|
791 |
+
],
|
792 |
+
"outputs": [
|
793 |
+
{
|
794 |
+
"name": "model",
|
795 |
+
"type": "COGVIDEOMODEL",
|
796 |
+
"links": [
|
797 |
+
212
|
798 |
+
]
|
799 |
+
},
|
800 |
+
{
|
801 |
+
"name": "vae",
|
802 |
+
"type": "VAE",
|
803 |
+
"links": [
|
804 |
+
206,
|
805 |
+
209
|
806 |
+
]
|
807 |
+
}
|
808 |
+
],
|
809 |
+
"properties": {
|
810 |
+
"Node name for S&R": "DownloadAndLoadCogVideoModel"
|
811 |
+
},
|
812 |
+
"widgets_values": [
|
813 |
+
"THUDM/CogVideoX-5b",
|
814 |
+
"bf16",
|
815 |
+
"disabled",
|
816 |
+
false,
|
817 |
+
"sdpa",
|
818 |
+
"main_device"
|
819 |
+
]
|
820 |
+
},
|
821 |
+
{
|
822 |
+
"id": 47,
|
823 |
+
"type": "VHS_VideoCombine",
|
824 |
+
"pos": {
|
825 |
+
"0": 1946,
|
826 |
+
"1": -172
|
827 |
+
},
|
828 |
+
"size": [
|
829 |
+
1110,
|
830 |
+
687.3333333333333
|
831 |
+
],
|
832 |
+
"flags": {},
|
833 |
+
"order": 14,
|
834 |
+
"mode": 0,
|
835 |
+
"inputs": [
|
836 |
+
{
|
837 |
+
"name": "images",
|
838 |
+
"type": "IMAGE",
|
839 |
+
"link": 132
|
840 |
+
},
|
841 |
+
{
|
842 |
+
"name": "audio",
|
843 |
+
"type": "AUDIO",
|
844 |
+
"link": null,
|
845 |
+
"shape": 7
|
846 |
+
},
|
847 |
+
{
|
848 |
+
"name": "meta_batch",
|
849 |
+
"type": "VHS_BatchManager",
|
850 |
+
"link": null,
|
851 |
+
"shape": 7
|
852 |
+
},
|
853 |
+
{
|
854 |
+
"name": "vae",
|
855 |
+
"type": "VAE",
|
856 |
+
"link": null,
|
857 |
+
"shape": 7
|
858 |
+
}
|
859 |
+
],
|
860 |
+
"outputs": [
|
861 |
+
{
|
862 |
+
"name": "Filenames",
|
863 |
+
"type": "VHS_FILENAMES",
|
864 |
+
"links": null,
|
865 |
+
"shape": 3
|
866 |
+
}
|
867 |
+
],
|
868 |
+
"properties": {
|
869 |
+
"Node name for S&R": "VHS_VideoCombine"
|
870 |
+
},
|
871 |
+
"widgets_values": {
|
872 |
+
"frame_rate": 8,
|
873 |
+
"loop_count": 0,
|
874 |
+
"filename_prefix": "CogVideoX_vid2vid",
|
875 |
+
"format": "video/h264-mp4",
|
876 |
+
"pix_fmt": "yuv420p",
|
877 |
+
"crf": 19,
|
878 |
+
"save_metadata": true,
|
879 |
+
"pingpong": false,
|
880 |
+
"save_output": true,
|
881 |
+
"videopreview": {
|
882 |
+
"hidden": false,
|
883 |
+
"paused": false,
|
884 |
+
"params": {
|
885 |
+
"filename": "CogVideoX_vid2vid_00003.mp4",
|
886 |
+
"subfolder": "",
|
887 |
+
"type": "temp",
|
888 |
+
"format": "video/h264-mp4",
|
889 |
+
"frame_rate": 8
|
890 |
+
}
|
891 |
+
}
|
892 |
+
}
|
893 |
+
}
|
894 |
+
],
|
895 |
+
"links": [
|
896 |
+
[
|
897 |
+
54,
|
898 |
+
20,
|
899 |
+
0,
|
900 |
+
30,
|
901 |
+
0,
|
902 |
+
"CLIP"
|
903 |
+
],
|
904 |
+
[
|
905 |
+
126,
|
906 |
+
41,
|
907 |
+
0,
|
908 |
+
57,
|
909 |
+
0,
|
910 |
+
"IMAGE"
|
911 |
+
],
|
912 |
+
[
|
913 |
+
132,
|
914 |
+
58,
|
915 |
+
0,
|
916 |
+
47,
|
917 |
+
0,
|
918 |
+
"IMAGE"
|
919 |
+
],
|
920 |
+
[
|
921 |
+
170,
|
922 |
+
55,
|
923 |
+
0,
|
924 |
+
58,
|
925 |
+
1,
|
926 |
+
"IMAGE"
|
927 |
+
],
|
928 |
+
[
|
929 |
+
177,
|
930 |
+
69,
|
931 |
+
0,
|
932 |
+
45,
|
933 |
+
2,
|
934 |
+
"INT"
|
935 |
+
],
|
936 |
+
[
|
937 |
+
179,
|
938 |
+
45,
|
939 |
+
0,
|
940 |
+
70,
|
941 |
+
0,
|
942 |
+
"IMAGE"
|
943 |
+
],
|
944 |
+
[
|
945 |
+
180,
|
946 |
+
70,
|
947 |
+
0,
|
948 |
+
41,
|
949 |
+
0,
|
950 |
+
"IMAGE"
|
951 |
+
],
|
952 |
+
[
|
953 |
+
191,
|
954 |
+
57,
|
955 |
+
0,
|
956 |
+
58,
|
957 |
+
0,
|
958 |
+
"IMAGE"
|
959 |
+
],
|
960 |
+
[
|
961 |
+
206,
|
962 |
+
75,
|
963 |
+
1,
|
964 |
+
76,
|
965 |
+
0,
|
966 |
+
"VAE"
|
967 |
+
],
|
968 |
+
[
|
969 |
+
208,
|
970 |
+
76,
|
971 |
+
0,
|
972 |
+
55,
|
973 |
+
0,
|
974 |
+
"IMAGE"
|
975 |
+
],
|
976 |
+
[
|
977 |
+
209,
|
978 |
+
75,
|
979 |
+
1,
|
980 |
+
77,
|
981 |
+
0,
|
982 |
+
"VAE"
|
983 |
+
],
|
984 |
+
[
|
985 |
+
210,
|
986 |
+
57,
|
987 |
+
0,
|
988 |
+
77,
|
989 |
+
1,
|
990 |
+
"IMAGE"
|
991 |
+
],
|
992 |
+
[
|
993 |
+
212,
|
994 |
+
75,
|
995 |
+
0,
|
996 |
+
78,
|
997 |
+
0,
|
998 |
+
"COGVIDEOMODEL"
|
999 |
+
],
|
1000 |
+
[
|
1001 |
+
213,
|
1002 |
+
30,
|
1003 |
+
0,
|
1004 |
+
78,
|
1005 |
+
1,
|
1006 |
+
"CONDITIONING"
|
1007 |
+
],
|
1008 |
+
[
|
1009 |
+
214,
|
1010 |
+
31,
|
1011 |
+
0,
|
1012 |
+
78,
|
1013 |
+
2,
|
1014 |
+
"CONDITIONING"
|
1015 |
+
],
|
1016 |
+
[
|
1017 |
+
215,
|
1018 |
+
77,
|
1019 |
+
0,
|
1020 |
+
78,
|
1021 |
+
3,
|
1022 |
+
"LATENT"
|
1023 |
+
],
|
1024 |
+
[
|
1025 |
+
216,
|
1026 |
+
78,
|
1027 |
+
0,
|
1028 |
+
76,
|
1029 |
+
1,
|
1030 |
+
"LATENT"
|
1031 |
+
],
|
1032 |
+
[
|
1033 |
+
217,
|
1034 |
+
30,
|
1035 |
+
1,
|
1036 |
+
31,
|
1037 |
+
0,
|
1038 |
+
"CLIP"
|
1039 |
+
],
|
1040 |
+
[
|
1041 |
+
218,
|
1042 |
+
57,
|
1043 |
+
3,
|
1044 |
+
78,
|
1045 |
+
9,
|
1046 |
+
"INT"
|
1047 |
+
]
|
1048 |
+
],
|
1049 |
+
"groups": [],
|
1050 |
+
"config": {},
|
1051 |
+
"extra": {
|
1052 |
+
"ds": {
|
1053 |
+
"scale": 0.8390545288825798,
|
1054 |
+
"offset": [
|
1055 |
+
-318.82552550589344,
|
1056 |
+
331.70430573737934
|
1057 |
+
]
|
1058 |
+
}
|
1059 |
+
},
|
1060 |
+
"version": 0.4
|
1061 |
+
}
|
custom_nodes/ComfyUI-CogVideoXWrapper/example_workflows/cogvideox_1_0_2b_controlnet_02.json
ADDED
@@ -0,0 +1,1003 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"last_node_id": 48,
|
3 |
+
"last_link_id": 90,
|
4 |
+
"nodes": [
|
5 |
+
{
|
6 |
+
"id": 41,
|
7 |
+
"type": "HEDPreprocessor",
|
8 |
+
"pos": {
|
9 |
+
"0": -570,
|
10 |
+
"1": -76
|
11 |
+
},
|
12 |
+
"size": {
|
13 |
+
"0": 315,
|
14 |
+
"1": 82
|
15 |
+
},
|
16 |
+
"flags": {},
|
17 |
+
"order": 4,
|
18 |
+
"mode": 0,
|
19 |
+
"inputs": [
|
20 |
+
{
|
21 |
+
"name": "image",
|
22 |
+
"type": "IMAGE",
|
23 |
+
"link": 73
|
24 |
+
}
|
25 |
+
],
|
26 |
+
"outputs": [
|
27 |
+
{
|
28 |
+
"name": "IMAGE",
|
29 |
+
"type": "IMAGE",
|
30 |
+
"links": [
|
31 |
+
74
|
32 |
+
],
|
33 |
+
"slot_index": 0
|
34 |
+
}
|
35 |
+
],
|
36 |
+
"properties": {
|
37 |
+
"Node name for S&R": "HEDPreprocessor"
|
38 |
+
},
|
39 |
+
"widgets_values": [
|
40 |
+
"enable",
|
41 |
+
768
|
42 |
+
]
|
43 |
+
},
|
44 |
+
{
|
45 |
+
"id": 38,
|
46 |
+
"type": "VHS_LoadVideo",
|
47 |
+
"pos": {
|
48 |
+
"0": -847,
|
49 |
+
"1": -78
|
50 |
+
},
|
51 |
+
"size": [
|
52 |
+
247.455078125,
|
53 |
+
427.63671875
|
54 |
+
],
|
55 |
+
"flags": {},
|
56 |
+
"order": 0,
|
57 |
+
"mode": 0,
|
58 |
+
"inputs": [
|
59 |
+
{
|
60 |
+
"name": "meta_batch",
|
61 |
+
"type": "VHS_BatchManager",
|
62 |
+
"link": null,
|
63 |
+
"shape": 7
|
64 |
+
},
|
65 |
+
{
|
66 |
+
"name": "vae",
|
67 |
+
"type": "VAE",
|
68 |
+
"link": null,
|
69 |
+
"shape": 7
|
70 |
+
}
|
71 |
+
],
|
72 |
+
"outputs": [
|
73 |
+
{
|
74 |
+
"name": "IMAGE",
|
75 |
+
"type": "IMAGE",
|
76 |
+
"links": [
|
77 |
+
73
|
78 |
+
],
|
79 |
+
"slot_index": 0
|
80 |
+
},
|
81 |
+
{
|
82 |
+
"name": "frame_count",
|
83 |
+
"type": "INT",
|
84 |
+
"links": null
|
85 |
+
},
|
86 |
+
{
|
87 |
+
"name": "audio",
|
88 |
+
"type": "AUDIO",
|
89 |
+
"links": null
|
90 |
+
},
|
91 |
+
{
|
92 |
+
"name": "video_info",
|
93 |
+
"type": "VHS_VIDEOINFO",
|
94 |
+
"links": null
|
95 |
+
}
|
96 |
+
],
|
97 |
+
"properties": {
|
98 |
+
"Node name for S&R": "VHS_LoadVideo"
|
99 |
+
},
|
100 |
+
"widgets_values": {
|
101 |
+
"video": "car.mp4",
|
102 |
+
"force_rate": 0,
|
103 |
+
"force_size": "Disabled",
|
104 |
+
"custom_width": 512,
|
105 |
+
"custom_height": 512,
|
106 |
+
"frame_load_cap": 49,
|
107 |
+
"skip_first_frames": 0,
|
108 |
+
"select_every_nth": 1,
|
109 |
+
"choose video to upload": "image",
|
110 |
+
"videopreview": {
|
111 |
+
"hidden": false,
|
112 |
+
"paused": false,
|
113 |
+
"params": {
|
114 |
+
"frame_load_cap": 49,
|
115 |
+
"skip_first_frames": 0,
|
116 |
+
"force_rate": 0,
|
117 |
+
"filename": "car.mp4",
|
118 |
+
"type": "input",
|
119 |
+
"format": "video/mp4",
|
120 |
+
"select_every_nth": 1
|
121 |
+
},
|
122 |
+
"muted": false
|
123 |
+
}
|
124 |
+
}
|
125 |
+
},
|
126 |
+
{
|
127 |
+
"id": 39,
|
128 |
+
"type": "ImageResizeKJ",
|
129 |
+
"pos": {
|
130 |
+
"0": -563,
|
131 |
+
"1": 63
|
132 |
+
},
|
133 |
+
"size": {
|
134 |
+
"0": 315,
|
135 |
+
"1": 266
|
136 |
+
},
|
137 |
+
"flags": {},
|
138 |
+
"order": 6,
|
139 |
+
"mode": 0,
|
140 |
+
"inputs": [
|
141 |
+
{
|
142 |
+
"name": "image",
|
143 |
+
"type": "IMAGE",
|
144 |
+
"link": 74
|
145 |
+
},
|
146 |
+
{
|
147 |
+
"name": "get_image_size",
|
148 |
+
"type": "IMAGE",
|
149 |
+
"link": null,
|
150 |
+
"shape": 7
|
151 |
+
},
|
152 |
+
{
|
153 |
+
"name": "width_input",
|
154 |
+
"type": "INT",
|
155 |
+
"link": null,
|
156 |
+
"widget": {
|
157 |
+
"name": "width_input"
|
158 |
+
},
|
159 |
+
"shape": 7
|
160 |
+
},
|
161 |
+
{
|
162 |
+
"name": "height_input",
|
163 |
+
"type": "INT",
|
164 |
+
"link": null,
|
165 |
+
"widget": {
|
166 |
+
"name": "height_input"
|
167 |
+
},
|
168 |
+
"shape": 7
|
169 |
+
}
|
170 |
+
],
|
171 |
+
"outputs": [
|
172 |
+
{
|
173 |
+
"name": "IMAGE",
|
174 |
+
"type": "IMAGE",
|
175 |
+
"links": [
|
176 |
+
71
|
177 |
+
],
|
178 |
+
"slot_index": 0
|
179 |
+
},
|
180 |
+
{
|
181 |
+
"name": "width",
|
182 |
+
"type": "INT",
|
183 |
+
"links": null
|
184 |
+
},
|
185 |
+
{
|
186 |
+
"name": "height",
|
187 |
+
"type": "INT",
|
188 |
+
"links": null
|
189 |
+
}
|
190 |
+
],
|
191 |
+
"properties": {
|
192 |
+
"Node name for S&R": "ImageResizeKJ"
|
193 |
+
},
|
194 |
+
"widgets_values": [
|
195 |
+
720,
|
196 |
+
480,
|
197 |
+
"lanczos",
|
198 |
+
false,
|
199 |
+
2,
|
200 |
+
0,
|
201 |
+
0,
|
202 |
+
"disabled"
|
203 |
+
]
|
204 |
+
},
|
205 |
+
{
|
206 |
+
"id": 30,
|
207 |
+
"type": "CogVideoTextEncode",
|
208 |
+
"pos": {
|
209 |
+
"0": 130,
|
210 |
+
"1": 350
|
211 |
+
},
|
212 |
+
"size": {
|
213 |
+
"0": 475.7875061035156,
|
214 |
+
"1": 231.29896545410156
|
215 |
+
},
|
216 |
+
"flags": {},
|
217 |
+
"order": 5,
|
218 |
+
"mode": 0,
|
219 |
+
"inputs": [
|
220 |
+
{
|
221 |
+
"name": "clip",
|
222 |
+
"type": "CLIP",
|
223 |
+
"link": 54
|
224 |
+
}
|
225 |
+
],
|
226 |
+
"outputs": [
|
227 |
+
{
|
228 |
+
"name": "conditioning",
|
229 |
+
"type": "CONDITIONING",
|
230 |
+
"links": [
|
231 |
+
84
|
232 |
+
],
|
233 |
+
"slot_index": 0,
|
234 |
+
"shape": 3
|
235 |
+
},
|
236 |
+
{
|
237 |
+
"name": "clip",
|
238 |
+
"type": "CLIP",
|
239 |
+
"links": [
|
240 |
+
78
|
241 |
+
],
|
242 |
+
"slot_index": 1
|
243 |
+
}
|
244 |
+
],
|
245 |
+
"properties": {
|
246 |
+
"Node name for S&R": "CogVideoTextEncode"
|
247 |
+
},
|
248 |
+
"widgets_values": [
|
249 |
+
"car is moving among mountains",
|
250 |
+
1,
|
251 |
+
false
|
252 |
+
]
|
253 |
+
},
|
254 |
+
{
|
255 |
+
"id": 31,
|
256 |
+
"type": "CogVideoTextEncode",
|
257 |
+
"pos": {
|
258 |
+
"0": 139,
|
259 |
+
"1": 643
|
260 |
+
},
|
261 |
+
"size": {
|
262 |
+
"0": 463.01251220703125,
|
263 |
+
"1": 144
|
264 |
+
},
|
265 |
+
"flags": {},
|
266 |
+
"order": 7,
|
267 |
+
"mode": 0,
|
268 |
+
"inputs": [
|
269 |
+
{
|
270 |
+
"name": "clip",
|
271 |
+
"type": "CLIP",
|
272 |
+
"link": 78
|
273 |
+
}
|
274 |
+
],
|
275 |
+
"outputs": [
|
276 |
+
{
|
277 |
+
"name": "conditioning",
|
278 |
+
"type": "CONDITIONING",
|
279 |
+
"links": [
|
280 |
+
85
|
281 |
+
],
|
282 |
+
"slot_index": 0,
|
283 |
+
"shape": 3
|
284 |
+
},
|
285 |
+
{
|
286 |
+
"name": "clip",
|
287 |
+
"type": "CLIP",
|
288 |
+
"links": null
|
289 |
+
}
|
290 |
+
],
|
291 |
+
"properties": {
|
292 |
+
"Node name for S&R": "CogVideoTextEncode"
|
293 |
+
},
|
294 |
+
"widgets_values": [
|
295 |
+
"",
|
296 |
+
1,
|
297 |
+
true
|
298 |
+
]
|
299 |
+
},
|
300 |
+
{
|
301 |
+
"id": 44,
|
302 |
+
"type": "DownloadAndLoadCogVideoModel",
|
303 |
+
"pos": {
|
304 |
+
"0": 326,
|
305 |
+
"1": -319
|
306 |
+
},
|
307 |
+
"size": {
|
308 |
+
"0": 315,
|
309 |
+
"1": 218
|
310 |
+
},
|
311 |
+
"flags": {},
|
312 |
+
"order": 1,
|
313 |
+
"mode": 0,
|
314 |
+
"inputs": [
|
315 |
+
{
|
316 |
+
"name": "block_edit",
|
317 |
+
"type": "TRANSFORMERBLOCKS",
|
318 |
+
"link": null,
|
319 |
+
"shape": 7
|
320 |
+
},
|
321 |
+
{
|
322 |
+
"name": "lora",
|
323 |
+
"type": "COGLORA",
|
324 |
+
"link": null,
|
325 |
+
"shape": 7
|
326 |
+
},
|
327 |
+
{
|
328 |
+
"name": "compile_args",
|
329 |
+
"type": "COMPILEARGS",
|
330 |
+
"link": null,
|
331 |
+
"shape": 7
|
332 |
+
}
|
333 |
+
],
|
334 |
+
"outputs": [
|
335 |
+
{
|
336 |
+
"name": "model",
|
337 |
+
"type": "COGVIDEOMODEL",
|
338 |
+
"links": [
|
339 |
+
83
|
340 |
+
]
|
341 |
+
},
|
342 |
+
{
|
343 |
+
"name": "vae",
|
344 |
+
"type": "VAE",
|
345 |
+
"links": [
|
346 |
+
82
|
347 |
+
],
|
348 |
+
"slot_index": 1
|
349 |
+
}
|
350 |
+
],
|
351 |
+
"properties": {
|
352 |
+
"Node name for S&R": "DownloadAndLoadCogVideoModel"
|
353 |
+
},
|
354 |
+
"widgets_values": [
|
355 |
+
"THUDM/CogVideoX-2b",
|
356 |
+
"bf16",
|
357 |
+
"disabled",
|
358 |
+
false,
|
359 |
+
"sdpa",
|
360 |
+
"main_device"
|
361 |
+
]
|
362 |
+
},
|
363 |
+
{
|
364 |
+
"id": 20,
|
365 |
+
"type": "CLIPLoader",
|
366 |
+
"pos": {
|
367 |
+
"0": -175,
|
368 |
+
"1": -317
|
369 |
+
},
|
370 |
+
"size": {
|
371 |
+
"0": 452.912353515625,
|
372 |
+
"1": 82
|
373 |
+
},
|
374 |
+
"flags": {},
|
375 |
+
"order": 2,
|
376 |
+
"mode": 0,
|
377 |
+
"inputs": [],
|
378 |
+
"outputs": [
|
379 |
+
{
|
380 |
+
"name": "CLIP",
|
381 |
+
"type": "CLIP",
|
382 |
+
"links": [
|
383 |
+
54
|
384 |
+
],
|
385 |
+
"slot_index": 0,
|
386 |
+
"shape": 3
|
387 |
+
}
|
388 |
+
],
|
389 |
+
"properties": {
|
390 |
+
"Node name for S&R": "CLIPLoader"
|
391 |
+
},
|
392 |
+
"widgets_values": [
|
393 |
+
"t5\\google_t5-v1_1-xxl_encoderonly-fp8_e4m3fn.safetensors",
|
394 |
+
"sd3"
|
395 |
+
]
|
396 |
+
},
|
397 |
+
{
|
398 |
+
"id": 35,
|
399 |
+
"type": "DownloadAndLoadCogVideoControlNet",
|
400 |
+
"pos": {
|
401 |
+
"0": -105,
|
402 |
+
"1": -182
|
403 |
+
},
|
404 |
+
"size": {
|
405 |
+
"0": 378,
|
406 |
+
"1": 58
|
407 |
+
},
|
408 |
+
"flags": {},
|
409 |
+
"order": 3,
|
410 |
+
"mode": 0,
|
411 |
+
"inputs": [],
|
412 |
+
"outputs": [
|
413 |
+
{
|
414 |
+
"name": "cogvideo_controlnet",
|
415 |
+
"type": "COGVIDECONTROLNETMODEL",
|
416 |
+
"links": [
|
417 |
+
67
|
418 |
+
]
|
419 |
+
}
|
420 |
+
],
|
421 |
+
"properties": {
|
422 |
+
"Node name for S&R": "DownloadAndLoadCogVideoControlNet"
|
423 |
+
},
|
424 |
+
"widgets_values": [
|
425 |
+
"TheDenk/cogvideox-2b-controlnet-hed-v1"
|
426 |
+
]
|
427 |
+
},
|
428 |
+
{
|
429 |
+
"id": 37,
|
430 |
+
"type": "CogVideoControlNet",
|
431 |
+
"pos": {
|
432 |
+
"0": 220,
|
433 |
+
"1": 155
|
434 |
+
},
|
435 |
+
"size": {
|
436 |
+
"0": 367.79998779296875,
|
437 |
+
"1": 126
|
438 |
+
},
|
439 |
+
"flags": {},
|
440 |
+
"order": 9,
|
441 |
+
"mode": 0,
|
442 |
+
"inputs": [
|
443 |
+
{
|
444 |
+
"name": "controlnet",
|
445 |
+
"type": "COGVIDECONTROLNETMODEL",
|
446 |
+
"link": 67
|
447 |
+
},
|
448 |
+
{
|
449 |
+
"name": "images",
|
450 |
+
"type": "IMAGE",
|
451 |
+
"link": 72
|
452 |
+
}
|
453 |
+
],
|
454 |
+
"outputs": [
|
455 |
+
{
|
456 |
+
"name": "cogvideo_controlnet",
|
457 |
+
"type": "COGVIDECONTROLNET",
|
458 |
+
"links": [
|
459 |
+
86
|
460 |
+
],
|
461 |
+
"slot_index": 0
|
462 |
+
}
|
463 |
+
],
|
464 |
+
"properties": {
|
465 |
+
"Node name for S&R": "CogVideoControlNet"
|
466 |
+
},
|
467 |
+
"widgets_values": [
|
468 |
+
1,
|
469 |
+
0,
|
470 |
+
1
|
471 |
+
]
|
472 |
+
},
|
473 |
+
{
|
474 |
+
"id": 40,
|
475 |
+
"type": "GetImageSizeAndCount",
|
476 |
+
"pos": {
|
477 |
+
"0": -123,
|
478 |
+
"1": -34
|
479 |
+
},
|
480 |
+
"size": {
|
481 |
+
"0": 277.20001220703125,
|
482 |
+
"1": 86
|
483 |
+
},
|
484 |
+
"flags": {},
|
485 |
+
"order": 8,
|
486 |
+
"mode": 0,
|
487 |
+
"inputs": [
|
488 |
+
{
|
489 |
+
"name": "image",
|
490 |
+
"type": "IMAGE",
|
491 |
+
"link": 71
|
492 |
+
}
|
493 |
+
],
|
494 |
+
"outputs": [
|
495 |
+
{
|
496 |
+
"name": "image",
|
497 |
+
"type": "IMAGE",
|
498 |
+
"links": [
|
499 |
+
72,
|
500 |
+
75
|
501 |
+
],
|
502 |
+
"slot_index": 0
|
503 |
+
},
|
504 |
+
{
|
505 |
+
"name": "720 width",
|
506 |
+
"type": "INT",
|
507 |
+
"links": [
|
508 |
+
89
|
509 |
+
]
|
510 |
+
},
|
511 |
+
{
|
512 |
+
"name": "480 height",
|
513 |
+
"type": "INT",
|
514 |
+
"links": [
|
515 |
+
90
|
516 |
+
],
|
517 |
+
"slot_index": 2
|
518 |
+
},
|
519 |
+
{
|
520 |
+
"name": "49 count",
|
521 |
+
"type": "INT",
|
522 |
+
"links": null
|
523 |
+
}
|
524 |
+
],
|
525 |
+
"properties": {
|
526 |
+
"Node name for S&R": "GetImageSizeAndCount"
|
527 |
+
},
|
528 |
+
"widgets_values": []
|
529 |
+
},
|
530 |
+
{
|
531 |
+
"id": 47,
|
532 |
+
"type": "EmptyLatentImage",
|
533 |
+
"pos": {
|
534 |
+
"0": 409,
|
535 |
+
"1": 77
|
536 |
+
},
|
537 |
+
"size": {
|
538 |
+
"0": 315,
|
539 |
+
"1": 106
|
540 |
+
},
|
541 |
+
"flags": {
|
542 |
+
"collapsed": true
|
543 |
+
},
|
544 |
+
"order": 10,
|
545 |
+
"mode": 0,
|
546 |
+
"inputs": [
|
547 |
+
{
|
548 |
+
"name": "width",
|
549 |
+
"type": "INT",
|
550 |
+
"link": 89,
|
551 |
+
"widget": {
|
552 |
+
"name": "width"
|
553 |
+
}
|
554 |
+
},
|
555 |
+
{
|
556 |
+
"name": "height",
|
557 |
+
"type": "INT",
|
558 |
+
"link": 90,
|
559 |
+
"widget": {
|
560 |
+
"name": "height"
|
561 |
+
}
|
562 |
+
}
|
563 |
+
],
|
564 |
+
"outputs": [
|
565 |
+
{
|
566 |
+
"name": "LATENT",
|
567 |
+
"type": "LATENT",
|
568 |
+
"links": [
|
569 |
+
88
|
570 |
+
]
|
571 |
+
}
|
572 |
+
],
|
573 |
+
"properties": {
|
574 |
+
"Node name for S&R": "EmptyLatentImage"
|
575 |
+
},
|
576 |
+
"widgets_values": [
|
577 |
+
720,
|
578 |
+
480,
|
579 |
+
1
|
580 |
+
]
|
581 |
+
},
|
582 |
+
{
|
583 |
+
"id": 46,
|
584 |
+
"type": "CogVideoSampler",
|
585 |
+
"pos": {
|
586 |
+
"0": 743,
|
587 |
+
"1": 49
|
588 |
+
},
|
589 |
+
"size": {
|
590 |
+
"0": 330,
|
591 |
+
"1": 574
|
592 |
+
},
|
593 |
+
"flags": {},
|
594 |
+
"order": 11,
|
595 |
+
"mode": 0,
|
596 |
+
"inputs": [
|
597 |
+
{
|
598 |
+
"name": "model",
|
599 |
+
"type": "COGVIDEOMODEL",
|
600 |
+
"link": 83
|
601 |
+
},
|
602 |
+
{
|
603 |
+
"name": "positive",
|
604 |
+
"type": "CONDITIONING",
|
605 |
+
"link": 84
|
606 |
+
},
|
607 |
+
{
|
608 |
+
"name": "negative",
|
609 |
+
"type": "CONDITIONING",
|
610 |
+
"link": 85
|
611 |
+
},
|
612 |
+
{
|
613 |
+
"name": "samples",
|
614 |
+
"type": "LATENT",
|
615 |
+
"link": 88,
|
616 |
+
"shape": 7
|
617 |
+
},
|
618 |
+
{
|
619 |
+
"name": "image_cond_latents",
|
620 |
+
"type": "LATENT",
|
621 |
+
"link": null,
|
622 |
+
"shape": 7
|
623 |
+
},
|
624 |
+
{
|
625 |
+
"name": "context_options",
|
626 |
+
"type": "COGCONTEXT",
|
627 |
+
"link": null,
|
628 |
+
"shape": 7
|
629 |
+
},
|
630 |
+
{
|
631 |
+
"name": "controlnet",
|
632 |
+
"type": "COGVIDECONTROLNET",
|
633 |
+
"link": 86,
|
634 |
+
"shape": 7
|
635 |
+
},
|
636 |
+
{
|
637 |
+
"name": "tora_trajectory",
|
638 |
+
"type": "TORAFEATURES",
|
639 |
+
"link": null,
|
640 |
+
"shape": 7
|
641 |
+
},
|
642 |
+
{
|
643 |
+
"name": "fastercache",
|
644 |
+
"type": "FASTERCACHEARGS",
|
645 |
+
"link": null,
|
646 |
+
"shape": 7
|
647 |
+
}
|
648 |
+
],
|
649 |
+
"outputs": [
|
650 |
+
{
|
651 |
+
"name": "samples",
|
652 |
+
"type": "LATENT",
|
653 |
+
"links": [
|
654 |
+
87
|
655 |
+
]
|
656 |
+
}
|
657 |
+
],
|
658 |
+
"properties": {
|
659 |
+
"Node name for S&R": "CogVideoSampler"
|
660 |
+
},
|
661 |
+
"widgets_values": [
|
662 |
+
49,
|
663 |
+
40,
|
664 |
+
6,
|
665 |
+
0,
|
666 |
+
"fixed",
|
667 |
+
"CogVideoXDDIM",
|
668 |
+
1
|
669 |
+
]
|
670 |
+
},
|
671 |
+
{
|
672 |
+
"id": 45,
|
673 |
+
"type": "CogVideoDecode",
|
674 |
+
"pos": {
|
675 |
+
"0": 758,
|
676 |
+
"1": 685
|
677 |
+
},
|
678 |
+
"size": {
|
679 |
+
"0": 315,
|
680 |
+
"1": 198
|
681 |
+
},
|
682 |
+
"flags": {},
|
683 |
+
"order": 12,
|
684 |
+
"mode": 0,
|
685 |
+
"inputs": [
|
686 |
+
{
|
687 |
+
"name": "vae",
|
688 |
+
"type": "VAE",
|
689 |
+
"link": 82
|
690 |
+
},
|
691 |
+
{
|
692 |
+
"name": "samples",
|
693 |
+
"type": "LATENT",
|
694 |
+
"link": 87
|
695 |
+
}
|
696 |
+
],
|
697 |
+
"outputs": [
|
698 |
+
{
|
699 |
+
"name": "images",
|
700 |
+
"type": "IMAGE",
|
701 |
+
"links": [
|
702 |
+
81
|
703 |
+
]
|
704 |
+
}
|
705 |
+
],
|
706 |
+
"properties": {
|
707 |
+
"Node name for S&R": "CogVideoDecode"
|
708 |
+
},
|
709 |
+
"widgets_values": [
|
710 |
+
true,
|
711 |
+
240,
|
712 |
+
360,
|
713 |
+
0.2,
|
714 |
+
0.2,
|
715 |
+
true
|
716 |
+
]
|
717 |
+
},
|
718 |
+
{
|
719 |
+
"id": 42,
|
720 |
+
"type": "ImageConcatMulti",
|
721 |
+
"pos": {
|
722 |
+
"0": 1145,
|
723 |
+
"1": -24
|
724 |
+
},
|
725 |
+
"size": {
|
726 |
+
"0": 210,
|
727 |
+
"1": 150
|
728 |
+
},
|
729 |
+
"flags": {},
|
730 |
+
"order": 13,
|
731 |
+
"mode": 0,
|
732 |
+
"inputs": [
|
733 |
+
{
|
734 |
+
"name": "image_1",
|
735 |
+
"type": "IMAGE",
|
736 |
+
"link": 75
|
737 |
+
},
|
738 |
+
{
|
739 |
+
"name": "image_2",
|
740 |
+
"type": "IMAGE",
|
741 |
+
"link": 81
|
742 |
+
}
|
743 |
+
],
|
744 |
+
"outputs": [
|
745 |
+
{
|
746 |
+
"name": "images",
|
747 |
+
"type": "IMAGE",
|
748 |
+
"links": [
|
749 |
+
77
|
750 |
+
],
|
751 |
+
"slot_index": 0
|
752 |
+
}
|
753 |
+
],
|
754 |
+
"properties": {},
|
755 |
+
"widgets_values": [
|
756 |
+
2,
|
757 |
+
"right",
|
758 |
+
false,
|
759 |
+
null
|
760 |
+
]
|
761 |
+
},
|
762 |
+
{
|
763 |
+
"id": 43,
|
764 |
+
"type": "VHS_VideoCombine",
|
765 |
+
"pos": {
|
766 |
+
"0": 1154,
|
767 |
+
"1": 202
|
768 |
+
},
|
769 |
+
"size": [
|
770 |
+
778.7022705078125,
|
771 |
+
576.9007568359375
|
772 |
+
],
|
773 |
+
"flags": {},
|
774 |
+
"order": 14,
|
775 |
+
"mode": 0,
|
776 |
+
"inputs": [
|
777 |
+
{
|
778 |
+
"name": "images",
|
779 |
+
"type": "IMAGE",
|
780 |
+
"link": 77
|
781 |
+
},
|
782 |
+
{
|
783 |
+
"name": "audio",
|
784 |
+
"type": "AUDIO",
|
785 |
+
"link": null,
|
786 |
+
"shape": 7
|
787 |
+
},
|
788 |
+
{
|
789 |
+
"name": "meta_batch",
|
790 |
+
"type": "VHS_BatchManager",
|
791 |
+
"link": null,
|
792 |
+
"shape": 7
|
793 |
+
},
|
794 |
+
{
|
795 |
+
"name": "vae",
|
796 |
+
"type": "VAE",
|
797 |
+
"link": null,
|
798 |
+
"shape": 7
|
799 |
+
}
|
800 |
+
],
|
801 |
+
"outputs": [
|
802 |
+
{
|
803 |
+
"name": "Filenames",
|
804 |
+
"type": "VHS_FILENAMES",
|
805 |
+
"links": null,
|
806 |
+
"shape": 3
|
807 |
+
}
|
808 |
+
],
|
809 |
+
"properties": {
|
810 |
+
"Node name for S&R": "VHS_VideoCombine"
|
811 |
+
},
|
812 |
+
"widgets_values": {
|
813 |
+
"frame_rate": 8,
|
814 |
+
"loop_count": 0,
|
815 |
+
"filename_prefix": "CogVideoX_2b_controlnet",
|
816 |
+
"format": "video/h264-mp4",
|
817 |
+
"pix_fmt": "yuv420p",
|
818 |
+
"crf": 19,
|
819 |
+
"save_metadata": true,
|
820 |
+
"pingpong": false,
|
821 |
+
"save_output": true,
|
822 |
+
"videopreview": {
|
823 |
+
"hidden": false,
|
824 |
+
"paused": false,
|
825 |
+
"params": {
|
826 |
+
"filename": "CogVideoX2B_controlnet_00003.mp4",
|
827 |
+
"subfolder": "",
|
828 |
+
"type": "temp",
|
829 |
+
"format": "video/h264-mp4",
|
830 |
+
"frame_rate": 8
|
831 |
+
},
|
832 |
+
"muted": false
|
833 |
+
}
|
834 |
+
}
|
835 |
+
}
|
836 |
+
],
|
837 |
+
"links": [
|
838 |
+
[
|
839 |
+
54,
|
840 |
+
20,
|
841 |
+
0,
|
842 |
+
30,
|
843 |
+
0,
|
844 |
+
"CLIP"
|
845 |
+
],
|
846 |
+
[
|
847 |
+
67,
|
848 |
+
35,
|
849 |
+
0,
|
850 |
+
37,
|
851 |
+
0,
|
852 |
+
"COGVIDECONTROLNETMODEL"
|
853 |
+
],
|
854 |
+
[
|
855 |
+
71,
|
856 |
+
39,
|
857 |
+
0,
|
858 |
+
40,
|
859 |
+
0,
|
860 |
+
"IMAGE"
|
861 |
+
],
|
862 |
+
[
|
863 |
+
72,
|
864 |
+
40,
|
865 |
+
0,
|
866 |
+
37,
|
867 |
+
1,
|
868 |
+
"IMAGE"
|
869 |
+
],
|
870 |
+
[
|
871 |
+
73,
|
872 |
+
38,
|
873 |
+
0,
|
874 |
+
41,
|
875 |
+
0,
|
876 |
+
"IMAGE"
|
877 |
+
],
|
878 |
+
[
|
879 |
+
74,
|
880 |
+
41,
|
881 |
+
0,
|
882 |
+
39,
|
883 |
+
0,
|
884 |
+
"IMAGE"
|
885 |
+
],
|
886 |
+
[
|
887 |
+
75,
|
888 |
+
40,
|
889 |
+
0,
|
890 |
+
42,
|
891 |
+
0,
|
892 |
+
"IMAGE"
|
893 |
+
],
|
894 |
+
[
|
895 |
+
77,
|
896 |
+
42,
|
897 |
+
0,
|
898 |
+
43,
|
899 |
+
0,
|
900 |
+
"IMAGE"
|
901 |
+
],
|
902 |
+
[
|
903 |
+
78,
|
904 |
+
30,
|
905 |
+
1,
|
906 |
+
31,
|
907 |
+
0,
|
908 |
+
"CLIP"
|
909 |
+
],
|
910 |
+
[
|
911 |
+
81,
|
912 |
+
45,
|
913 |
+
0,
|
914 |
+
42,
|
915 |
+
1,
|
916 |
+
"IMAGE"
|
917 |
+
],
|
918 |
+
[
|
919 |
+
82,
|
920 |
+
44,
|
921 |
+
1,
|
922 |
+
45,
|
923 |
+
0,
|
924 |
+
"VAE"
|
925 |
+
],
|
926 |
+
[
|
927 |
+
83,
|
928 |
+
44,
|
929 |
+
0,
|
930 |
+
46,
|
931 |
+
0,
|
932 |
+
"COGVIDEOMODEL"
|
933 |
+
],
|
934 |
+
[
|
935 |
+
84,
|
936 |
+
30,
|
937 |
+
0,
|
938 |
+
46,
|
939 |
+
1,
|
940 |
+
"CONDITIONING"
|
941 |
+
],
|
942 |
+
[
|
943 |
+
85,
|
944 |
+
31,
|
945 |
+
0,
|
946 |
+
46,
|
947 |
+
2,
|
948 |
+
"CONDITIONING"
|
949 |
+
],
|
950 |
+
[
|
951 |
+
86,
|
952 |
+
37,
|
953 |
+
0,
|
954 |
+
46,
|
955 |
+
6,
|
956 |
+
"COGVIDECONTROLNET"
|
957 |
+
],
|
958 |
+
[
|
959 |
+
87,
|
960 |
+
46,
|
961 |
+
0,
|
962 |
+
45,
|
963 |
+
1,
|
964 |
+
"LATENT"
|
965 |
+
],
|
966 |
+
[
|
967 |
+
88,
|
968 |
+
47,
|
969 |
+
0,
|
970 |
+
46,
|
971 |
+
3,
|
972 |
+
"LATENT"
|
973 |
+
],
|
974 |
+
[
|
975 |
+
89,
|
976 |
+
40,
|
977 |
+
1,
|
978 |
+
47,
|
979 |
+
0,
|
980 |
+
"INT"
|
981 |
+
],
|
982 |
+
[
|
983 |
+
90,
|
984 |
+
40,
|
985 |
+
2,
|
986 |
+
47,
|
987 |
+
1,
|
988 |
+
"INT"
|
989 |
+
]
|
990 |
+
],
|
991 |
+
"groups": [],
|
992 |
+
"config": {},
|
993 |
+
"extra": {
|
994 |
+
"ds": {
|
995 |
+
"scale": 0.7627768444387069,
|
996 |
+
"offset": [
|
997 |
+
1075.4957551311677,
|
998 |
+
398.4420252790512
|
999 |
+
]
|
1000 |
+
}
|
1001 |
+
},
|
1002 |
+
"version": 0.4
|
1003 |
+
}
|
custom_nodes/ComfyUI-CogVideoXWrapper/example_workflows/cogvideox_1_0_5b_I2V_02.json
ADDED
@@ -0,0 +1,688 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"last_node_id": 63,
|
3 |
+
"last_link_id": 149,
|
4 |
+
"nodes": [
|
5 |
+
{
|
6 |
+
"id": 31,
|
7 |
+
"type": "CogVideoTextEncode",
|
8 |
+
"pos": {
|
9 |
+
"0": 497,
|
10 |
+
"1": 520
|
11 |
+
},
|
12 |
+
"size": {
|
13 |
+
"0": 463.01251220703125,
|
14 |
+
"1": 144
|
15 |
+
},
|
16 |
+
"flags": {},
|
17 |
+
"order": 6,
|
18 |
+
"mode": 0,
|
19 |
+
"inputs": [
|
20 |
+
{
|
21 |
+
"name": "clip",
|
22 |
+
"type": "CLIP",
|
23 |
+
"link": 149
|
24 |
+
}
|
25 |
+
],
|
26 |
+
"outputs": [
|
27 |
+
{
|
28 |
+
"name": "conditioning",
|
29 |
+
"type": "CONDITIONING",
|
30 |
+
"links": [
|
31 |
+
146
|
32 |
+
],
|
33 |
+
"slot_index": 0,
|
34 |
+
"shape": 3
|
35 |
+
},
|
36 |
+
{
|
37 |
+
"name": "clip",
|
38 |
+
"type": "CLIP",
|
39 |
+
"links": null
|
40 |
+
}
|
41 |
+
],
|
42 |
+
"properties": {
|
43 |
+
"Node name for S&R": "CogVideoTextEncode"
|
44 |
+
},
|
45 |
+
"widgets_values": [
|
46 |
+
"The video is not of a high quality, it has a low resolution. Watermark present in each frame. Strange motion trajectory. ",
|
47 |
+
1,
|
48 |
+
true
|
49 |
+
]
|
50 |
+
},
|
51 |
+
{
|
52 |
+
"id": 63,
|
53 |
+
"type": "CogVideoSampler",
|
54 |
+
"pos": {
|
55 |
+
"0": 1142,
|
56 |
+
"1": 74
|
57 |
+
},
|
58 |
+
"size": [
|
59 |
+
330,
|
60 |
+
574
|
61 |
+
],
|
62 |
+
"flags": {},
|
63 |
+
"order": 7,
|
64 |
+
"mode": 0,
|
65 |
+
"inputs": [
|
66 |
+
{
|
67 |
+
"name": "model",
|
68 |
+
"type": "COGVIDEOMODEL",
|
69 |
+
"link": 144
|
70 |
+
},
|
71 |
+
{
|
72 |
+
"name": "positive",
|
73 |
+
"type": "CONDITIONING",
|
74 |
+
"link": 145
|
75 |
+
},
|
76 |
+
{
|
77 |
+
"name": "negative",
|
78 |
+
"type": "CONDITIONING",
|
79 |
+
"link": 146
|
80 |
+
},
|
81 |
+
{
|
82 |
+
"name": "samples",
|
83 |
+
"type": "LATENT",
|
84 |
+
"link": null,
|
85 |
+
"shape": 7
|
86 |
+
},
|
87 |
+
{
|
88 |
+
"name": "image_cond_latents",
|
89 |
+
"type": "LATENT",
|
90 |
+
"link": 147,
|
91 |
+
"shape": 7
|
92 |
+
},
|
93 |
+
{
|
94 |
+
"name": "context_options",
|
95 |
+
"type": "COGCONTEXT",
|
96 |
+
"link": null,
|
97 |
+
"shape": 7
|
98 |
+
},
|
99 |
+
{
|
100 |
+
"name": "controlnet",
|
101 |
+
"type": "COGVIDECONTROLNET",
|
102 |
+
"link": null,
|
103 |
+
"shape": 7
|
104 |
+
},
|
105 |
+
{
|
106 |
+
"name": "tora_trajectory",
|
107 |
+
"type": "TORAFEATURES",
|
108 |
+
"link": null,
|
109 |
+
"shape": 7
|
110 |
+
},
|
111 |
+
{
|
112 |
+
"name": "fastercache",
|
113 |
+
"type": "FASTERCACHEARGS",
|
114 |
+
"link": null,
|
115 |
+
"shape": 7
|
116 |
+
}
|
117 |
+
],
|
118 |
+
"outputs": [
|
119 |
+
{
|
120 |
+
"name": "samples",
|
121 |
+
"type": "LATENT",
|
122 |
+
"links": [
|
123 |
+
148
|
124 |
+
]
|
125 |
+
}
|
126 |
+
],
|
127 |
+
"properties": {
|
128 |
+
"Node name for S&R": "CogVideoSampler"
|
129 |
+
},
|
130 |
+
"widgets_values": [
|
131 |
+
49,
|
132 |
+
25,
|
133 |
+
6,
|
134 |
+
0,
|
135 |
+
"fixed",
|
136 |
+
"CogVideoXDDIM",
|
137 |
+
1
|
138 |
+
]
|
139 |
+
},
|
140 |
+
{
|
141 |
+
"id": 62,
|
142 |
+
"type": "CogVideoImageEncode",
|
143 |
+
"pos": {
|
144 |
+
"0": 1149,
|
145 |
+
"1": 711
|
146 |
+
},
|
147 |
+
"size": {
|
148 |
+
"0": 315,
|
149 |
+
"1": 122
|
150 |
+
},
|
151 |
+
"flags": {},
|
152 |
+
"order": 5,
|
153 |
+
"mode": 0,
|
154 |
+
"inputs": [
|
155 |
+
{
|
156 |
+
"name": "vae",
|
157 |
+
"type": "VAE",
|
158 |
+
"link": 141
|
159 |
+
},
|
160 |
+
{
|
161 |
+
"name": "start_image",
|
162 |
+
"type": "IMAGE",
|
163 |
+
"link": 142
|
164 |
+
},
|
165 |
+
{
|
166 |
+
"name": "end_image",
|
167 |
+
"type": "IMAGE",
|
168 |
+
"link": null,
|
169 |
+
"shape": 7
|
170 |
+
}
|
171 |
+
],
|
172 |
+
"outputs": [
|
173 |
+
{
|
174 |
+
"name": "samples",
|
175 |
+
"type": "LATENT",
|
176 |
+
"links": [
|
177 |
+
147
|
178 |
+
]
|
179 |
+
}
|
180 |
+
],
|
181 |
+
"properties": {
|
182 |
+
"Node name for S&R": "CogVideoImageEncode"
|
183 |
+
},
|
184 |
+
"widgets_values": [
|
185 |
+
false,
|
186 |
+
0
|
187 |
+
]
|
188 |
+
},
|
189 |
+
{
|
190 |
+
"id": 59,
|
191 |
+
"type": "DownloadAndLoadCogVideoModel",
|
192 |
+
"pos": {
|
193 |
+
"0": 622,
|
194 |
+
"1": -25
|
195 |
+
},
|
196 |
+
"size": {
|
197 |
+
"0": 315,
|
198 |
+
"1": 218
|
199 |
+
},
|
200 |
+
"flags": {},
|
201 |
+
"order": 0,
|
202 |
+
"mode": 0,
|
203 |
+
"inputs": [
|
204 |
+
{
|
205 |
+
"name": "block_edit",
|
206 |
+
"type": "TRANSFORMERBLOCKS",
|
207 |
+
"link": null,
|
208 |
+
"shape": 7
|
209 |
+
},
|
210 |
+
{
|
211 |
+
"name": "lora",
|
212 |
+
"type": "COGLORA",
|
213 |
+
"link": null,
|
214 |
+
"shape": 7
|
215 |
+
},
|
216 |
+
{
|
217 |
+
"name": "compile_args",
|
218 |
+
"type": "COMPILEARGS",
|
219 |
+
"link": null,
|
220 |
+
"shape": 7
|
221 |
+
}
|
222 |
+
],
|
223 |
+
"outputs": [
|
224 |
+
{
|
225 |
+
"name": "model",
|
226 |
+
"type": "COGVIDEOMODEL",
|
227 |
+
"links": [
|
228 |
+
144
|
229 |
+
]
|
230 |
+
},
|
231 |
+
{
|
232 |
+
"name": "vae",
|
233 |
+
"type": "VAE",
|
234 |
+
"links": [
|
235 |
+
132,
|
236 |
+
141
|
237 |
+
],
|
238 |
+
"slot_index": 1
|
239 |
+
}
|
240 |
+
],
|
241 |
+
"properties": {
|
242 |
+
"Node name for S&R": "DownloadAndLoadCogVideoModel"
|
243 |
+
},
|
244 |
+
"widgets_values": [
|
245 |
+
"THUDM/CogVideoX-5b-I2V",
|
246 |
+
"bf16",
|
247 |
+
"disabled",
|
248 |
+
false,
|
249 |
+
"sdpa",
|
250 |
+
"main_device"
|
251 |
+
]
|
252 |
+
},
|
253 |
+
{
|
254 |
+
"id": 30,
|
255 |
+
"type": "CogVideoTextEncode",
|
256 |
+
"pos": {
|
257 |
+
"0": 493,
|
258 |
+
"1": 303
|
259 |
+
},
|
260 |
+
"size": {
|
261 |
+
"0": 471.90142822265625,
|
262 |
+
"1": 168.08047485351562
|
263 |
+
},
|
264 |
+
"flags": {},
|
265 |
+
"order": 4,
|
266 |
+
"mode": 0,
|
267 |
+
"inputs": [
|
268 |
+
{
|
269 |
+
"name": "clip",
|
270 |
+
"type": "CLIP",
|
271 |
+
"link": 54
|
272 |
+
}
|
273 |
+
],
|
274 |
+
"outputs": [
|
275 |
+
{
|
276 |
+
"name": "conditioning",
|
277 |
+
"type": "CONDITIONING",
|
278 |
+
"links": [
|
279 |
+
145
|
280 |
+
],
|
281 |
+
"slot_index": 0,
|
282 |
+
"shape": 3
|
283 |
+
},
|
284 |
+
{
|
285 |
+
"name": "clip",
|
286 |
+
"type": "CLIP",
|
287 |
+
"links": [
|
288 |
+
149
|
289 |
+
],
|
290 |
+
"slot_index": 1
|
291 |
+
}
|
292 |
+
],
|
293 |
+
"properties": {
|
294 |
+
"Node name for S&R": "CogVideoTextEncode"
|
295 |
+
},
|
296 |
+
"widgets_values": [
|
297 |
+
"a majestic stag is grazing in an enhanced forest, basking in the setting sun filtered by the trees",
|
298 |
+
1,
|
299 |
+
false
|
300 |
+
]
|
301 |
+
},
|
302 |
+
{
|
303 |
+
"id": 37,
|
304 |
+
"type": "ImageResizeKJ",
|
305 |
+
"pos": {
|
306 |
+
"0": 784,
|
307 |
+
"1": 731
|
308 |
+
},
|
309 |
+
"size": {
|
310 |
+
"0": 315,
|
311 |
+
"1": 266
|
312 |
+
},
|
313 |
+
"flags": {},
|
314 |
+
"order": 3,
|
315 |
+
"mode": 0,
|
316 |
+
"inputs": [
|
317 |
+
{
|
318 |
+
"name": "image",
|
319 |
+
"type": "IMAGE",
|
320 |
+
"link": 71
|
321 |
+
},
|
322 |
+
{
|
323 |
+
"name": "get_image_size",
|
324 |
+
"type": "IMAGE",
|
325 |
+
"link": null,
|
326 |
+
"shape": 7
|
327 |
+
},
|
328 |
+
{
|
329 |
+
"name": "width_input",
|
330 |
+
"type": "INT",
|
331 |
+
"link": null,
|
332 |
+
"widget": {
|
333 |
+
"name": "width_input"
|
334 |
+
}
|
335 |
+
},
|
336 |
+
{
|
337 |
+
"name": "height_input",
|
338 |
+
"type": "INT",
|
339 |
+
"link": null,
|
340 |
+
"widget": {
|
341 |
+
"name": "height_input"
|
342 |
+
}
|
343 |
+
}
|
344 |
+
],
|
345 |
+
"outputs": [
|
346 |
+
{
|
347 |
+
"name": "IMAGE",
|
348 |
+
"type": "IMAGE",
|
349 |
+
"links": [
|
350 |
+
142
|
351 |
+
],
|
352 |
+
"slot_index": 0,
|
353 |
+
"shape": 3
|
354 |
+
},
|
355 |
+
{
|
356 |
+
"name": "width",
|
357 |
+
"type": "INT",
|
358 |
+
"links": null,
|
359 |
+
"shape": 3
|
360 |
+
},
|
361 |
+
{
|
362 |
+
"name": "height",
|
363 |
+
"type": "INT",
|
364 |
+
"links": null,
|
365 |
+
"shape": 3
|
366 |
+
}
|
367 |
+
],
|
368 |
+
"properties": {
|
369 |
+
"Node name for S&R": "ImageResizeKJ"
|
370 |
+
},
|
371 |
+
"widgets_values": [
|
372 |
+
720,
|
373 |
+
480,
|
374 |
+
"lanczos",
|
375 |
+
false,
|
376 |
+
16,
|
377 |
+
0,
|
378 |
+
0,
|
379 |
+
"disabled"
|
380 |
+
]
|
381 |
+
},
|
382 |
+
{
|
383 |
+
"id": 36,
|
384 |
+
"type": "LoadImage",
|
385 |
+
"pos": {
|
386 |
+
"0": 335,
|
387 |
+
"1": 731
|
388 |
+
},
|
389 |
+
"size": {
|
390 |
+
"0": 402.06353759765625,
|
391 |
+
"1": 396.6225891113281
|
392 |
+
},
|
393 |
+
"flags": {},
|
394 |
+
"order": 1,
|
395 |
+
"mode": 0,
|
396 |
+
"inputs": [],
|
397 |
+
"outputs": [
|
398 |
+
{
|
399 |
+
"name": "IMAGE",
|
400 |
+
"type": "IMAGE",
|
401 |
+
"links": [
|
402 |
+
71
|
403 |
+
],
|
404 |
+
"slot_index": 0,
|
405 |
+
"shape": 3
|
406 |
+
},
|
407 |
+
{
|
408 |
+
"name": "MASK",
|
409 |
+
"type": "MASK",
|
410 |
+
"links": null,
|
411 |
+
"shape": 3
|
412 |
+
}
|
413 |
+
],
|
414 |
+
"properties": {
|
415 |
+
"Node name for S&R": "LoadImage"
|
416 |
+
},
|
417 |
+
"widgets_values": [
|
418 |
+
"sd3stag.png",
|
419 |
+
"image"
|
420 |
+
]
|
421 |
+
},
|
422 |
+
{
|
423 |
+
"id": 20,
|
424 |
+
"type": "CLIPLoader",
|
425 |
+
"pos": {
|
426 |
+
"0": -2,
|
427 |
+
"1": 304
|
428 |
+
},
|
429 |
+
"size": {
|
430 |
+
"0": 451.30548095703125,
|
431 |
+
"1": 82
|
432 |
+
},
|
433 |
+
"flags": {},
|
434 |
+
"order": 2,
|
435 |
+
"mode": 0,
|
436 |
+
"inputs": [],
|
437 |
+
"outputs": [
|
438 |
+
{
|
439 |
+
"name": "CLIP",
|
440 |
+
"type": "CLIP",
|
441 |
+
"links": [
|
442 |
+
54
|
443 |
+
],
|
444 |
+
"slot_index": 0,
|
445 |
+
"shape": 3
|
446 |
+
}
|
447 |
+
],
|
448 |
+
"properties": {
|
449 |
+
"Node name for S&R": "CLIPLoader"
|
450 |
+
},
|
451 |
+
"widgets_values": [
|
452 |
+
"t5\\google_t5-v1_1-xxl_encoderonly-fp8_e4m3fn.safetensors",
|
453 |
+
"sd3"
|
454 |
+
]
|
455 |
+
},
|
456 |
+
{
|
457 |
+
"id": 60,
|
458 |
+
"type": "CogVideoDecode",
|
459 |
+
"pos": {
|
460 |
+
"0": 1523,
|
461 |
+
"1": -6
|
462 |
+
},
|
463 |
+
"size": {
|
464 |
+
"0": 315,
|
465 |
+
"1": 198
|
466 |
+
},
|
467 |
+
"flags": {},
|
468 |
+
"order": 8,
|
469 |
+
"mode": 0,
|
470 |
+
"inputs": [
|
471 |
+
{
|
472 |
+
"name": "vae",
|
473 |
+
"type": "VAE",
|
474 |
+
"link": 132
|
475 |
+
},
|
476 |
+
{
|
477 |
+
"name": "samples",
|
478 |
+
"type": "LATENT",
|
479 |
+
"link": 148
|
480 |
+
}
|
481 |
+
],
|
482 |
+
"outputs": [
|
483 |
+
{
|
484 |
+
"name": "images",
|
485 |
+
"type": "IMAGE",
|
486 |
+
"links": [
|
487 |
+
134
|
488 |
+
]
|
489 |
+
}
|
490 |
+
],
|
491 |
+
"properties": {
|
492 |
+
"Node name for S&R": "CogVideoDecode"
|
493 |
+
},
|
494 |
+
"widgets_values": [
|
495 |
+
true,
|
496 |
+
240,
|
497 |
+
360,
|
498 |
+
0.2,
|
499 |
+
0.2,
|
500 |
+
true
|
501 |
+
]
|
502 |
+
},
|
503 |
+
{
|
504 |
+
"id": 44,
|
505 |
+
"type": "VHS_VideoCombine",
|
506 |
+
"pos": {
|
507 |
+
"0": 1884,
|
508 |
+
"1": -6
|
509 |
+
},
|
510 |
+
"size": [
|
511 |
+
605.3909912109375,
|
512 |
+
714.2606608072917
|
513 |
+
],
|
514 |
+
"flags": {},
|
515 |
+
"order": 9,
|
516 |
+
"mode": 0,
|
517 |
+
"inputs": [
|
518 |
+
{
|
519 |
+
"name": "images",
|
520 |
+
"type": "IMAGE",
|
521 |
+
"link": 134
|
522 |
+
},
|
523 |
+
{
|
524 |
+
"name": "audio",
|
525 |
+
"type": "AUDIO",
|
526 |
+
"link": null,
|
527 |
+
"shape": 7
|
528 |
+
},
|
529 |
+
{
|
530 |
+
"name": "meta_batch",
|
531 |
+
"type": "VHS_BatchManager",
|
532 |
+
"link": null,
|
533 |
+
"shape": 7
|
534 |
+
},
|
535 |
+
{
|
536 |
+
"name": "vae",
|
537 |
+
"type": "VAE",
|
538 |
+
"link": null,
|
539 |
+
"shape": 7
|
540 |
+
}
|
541 |
+
],
|
542 |
+
"outputs": [
|
543 |
+
{
|
544 |
+
"name": "Filenames",
|
545 |
+
"type": "VHS_FILENAMES",
|
546 |
+
"links": null,
|
547 |
+
"shape": 3
|
548 |
+
}
|
549 |
+
],
|
550 |
+
"properties": {
|
551 |
+
"Node name for S&R": "VHS_VideoCombine"
|
552 |
+
},
|
553 |
+
"widgets_values": {
|
554 |
+
"frame_rate": 8,
|
555 |
+
"loop_count": 0,
|
556 |
+
"filename_prefix": "CogVideoX-I2V",
|
557 |
+
"format": "video/h264-mp4",
|
558 |
+
"pix_fmt": "yuv420p",
|
559 |
+
"crf": 19,
|
560 |
+
"save_metadata": true,
|
561 |
+
"pingpong": false,
|
562 |
+
"save_output": true,
|
563 |
+
"videopreview": {
|
564 |
+
"hidden": false,
|
565 |
+
"paused": false,
|
566 |
+
"params": {
|
567 |
+
"filename": "CogVideoX-I2V_00001.mp4",
|
568 |
+
"subfolder": "",
|
569 |
+
"type": "temp",
|
570 |
+
"format": "video/h264-mp4",
|
571 |
+
"frame_rate": 8
|
572 |
+
},
|
573 |
+
"muted": false
|
574 |
+
}
|
575 |
+
}
|
576 |
+
}
|
577 |
+
],
|
578 |
+
"links": [
|
579 |
+
[
|
580 |
+
54,
|
581 |
+
20,
|
582 |
+
0,
|
583 |
+
30,
|
584 |
+
0,
|
585 |
+
"CLIP"
|
586 |
+
],
|
587 |
+
[
|
588 |
+
71,
|
589 |
+
36,
|
590 |
+
0,
|
591 |
+
37,
|
592 |
+
0,
|
593 |
+
"IMAGE"
|
594 |
+
],
|
595 |
+
[
|
596 |
+
132,
|
597 |
+
59,
|
598 |
+
1,
|
599 |
+
60,
|
600 |
+
0,
|
601 |
+
"VAE"
|
602 |
+
],
|
603 |
+
[
|
604 |
+
134,
|
605 |
+
60,
|
606 |
+
0,
|
607 |
+
44,
|
608 |
+
0,
|
609 |
+
"IMAGE"
|
610 |
+
],
|
611 |
+
[
|
612 |
+
141,
|
613 |
+
59,
|
614 |
+
1,
|
615 |
+
62,
|
616 |
+
0,
|
617 |
+
"VAE"
|
618 |
+
],
|
619 |
+
[
|
620 |
+
142,
|
621 |
+
37,
|
622 |
+
0,
|
623 |
+
62,
|
624 |
+
1,
|
625 |
+
"IMAGE"
|
626 |
+
],
|
627 |
+
[
|
628 |
+
144,
|
629 |
+
59,
|
630 |
+
0,
|
631 |
+
63,
|
632 |
+
0,
|
633 |
+
"COGVIDEOMODEL"
|
634 |
+
],
|
635 |
+
[
|
636 |
+
145,
|
637 |
+
30,
|
638 |
+
0,
|
639 |
+
63,
|
640 |
+
1,
|
641 |
+
"CONDITIONING"
|
642 |
+
],
|
643 |
+
[
|
644 |
+
146,
|
645 |
+
31,
|
646 |
+
0,
|
647 |
+
63,
|
648 |
+
2,
|
649 |
+
"CONDITIONING"
|
650 |
+
],
|
651 |
+
[
|
652 |
+
147,
|
653 |
+
62,
|
654 |
+
0,
|
655 |
+
63,
|
656 |
+
4,
|
657 |
+
"LATENT"
|
658 |
+
],
|
659 |
+
[
|
660 |
+
148,
|
661 |
+
63,
|
662 |
+
0,
|
663 |
+
60,
|
664 |
+
1,
|
665 |
+
"LATENT"
|
666 |
+
],
|
667 |
+
[
|
668 |
+
149,
|
669 |
+
30,
|
670 |
+
1,
|
671 |
+
31,
|
672 |
+
0,
|
673 |
+
"CLIP"
|
674 |
+
]
|
675 |
+
],
|
676 |
+
"groups": [],
|
677 |
+
"config": {},
|
678 |
+
"extra": {
|
679 |
+
"ds": {
|
680 |
+
"scale": 0.7627768444387059,
|
681 |
+
"offset": [
|
682 |
+
648.7113591814891,
|
683 |
+
185.9907078691075
|
684 |
+
]
|
685 |
+
}
|
686 |
+
},
|
687 |
+
"version": 0.4
|
688 |
+
}
|
custom_nodes/ComfyUI-CogVideoXWrapper/example_workflows/cogvideox_1_0_5b_I2V_Tora_02.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
custom_nodes/ComfyUI-CogVideoXWrapper/example_workflows/cogvideox_1_0_5b_I2V_noise_warp_01.json
ADDED
@@ -0,0 +1,1291 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"last_node_id": 84,
|
3 |
+
"last_link_id": 190,
|
4 |
+
"nodes": [
|
5 |
+
{
|
6 |
+
"id": 31,
|
7 |
+
"type": "CogVideoTextEncode",
|
8 |
+
"pos": [
|
9 |
+
497,
|
10 |
+
520
|
11 |
+
],
|
12 |
+
"size": [
|
13 |
+
463.01251220703125,
|
14 |
+
144
|
15 |
+
],
|
16 |
+
"flags": {},
|
17 |
+
"order": 10,
|
18 |
+
"mode": 0,
|
19 |
+
"inputs": [
|
20 |
+
{
|
21 |
+
"name": "clip",
|
22 |
+
"type": "CLIP",
|
23 |
+
"link": 149
|
24 |
+
}
|
25 |
+
],
|
26 |
+
"outputs": [
|
27 |
+
{
|
28 |
+
"name": "conditioning",
|
29 |
+
"type": "CONDITIONING",
|
30 |
+
"links": [
|
31 |
+
146
|
32 |
+
],
|
33 |
+
"slot_index": 0,
|
34 |
+
"shape": 3
|
35 |
+
},
|
36 |
+
{
|
37 |
+
"name": "clip",
|
38 |
+
"type": "CLIP",
|
39 |
+
"links": null
|
40 |
+
}
|
41 |
+
],
|
42 |
+
"properties": {
|
43 |
+
"Node name for S&R": "CogVideoTextEncode"
|
44 |
+
},
|
45 |
+
"widgets_values": [
|
46 |
+
"The video is not of a high quality, it has a low resolution. Watermark present in each frame. Strange motion trajectory. ",
|
47 |
+
1,
|
48 |
+
true
|
49 |
+
]
|
50 |
+
},
|
51 |
+
{
|
52 |
+
"id": 20,
|
53 |
+
"type": "CLIPLoader",
|
54 |
+
"pos": [
|
55 |
+
-2,
|
56 |
+
304
|
57 |
+
],
|
58 |
+
"size": [
|
59 |
+
451.30548095703125,
|
60 |
+
82
|
61 |
+
],
|
62 |
+
"flags": {},
|
63 |
+
"order": 0,
|
64 |
+
"mode": 0,
|
65 |
+
"inputs": [],
|
66 |
+
"outputs": [
|
67 |
+
{
|
68 |
+
"name": "CLIP",
|
69 |
+
"type": "CLIP",
|
70 |
+
"links": [
|
71 |
+
54
|
72 |
+
],
|
73 |
+
"slot_index": 0,
|
74 |
+
"shape": 3
|
75 |
+
}
|
76 |
+
],
|
77 |
+
"properties": {
|
78 |
+
"Node name for S&R": "CLIPLoader"
|
79 |
+
},
|
80 |
+
"widgets_values": [
|
81 |
+
"t5\\google_t5-v1_1-xxl_encoderonly-fp8_e4m3fn.safetensors",
|
82 |
+
"sd3",
|
83 |
+
"default"
|
84 |
+
]
|
85 |
+
},
|
86 |
+
{
|
87 |
+
"id": 74,
|
88 |
+
"type": "ImageConcatMulti",
|
89 |
+
"pos": [
|
90 |
+
1787.351318359375,
|
91 |
+
513.0852661132812
|
92 |
+
],
|
93 |
+
"size": [
|
94 |
+
210,
|
95 |
+
150
|
96 |
+
],
|
97 |
+
"flags": {},
|
98 |
+
"order": 19,
|
99 |
+
"mode": 0,
|
100 |
+
"inputs": [
|
101 |
+
{
|
102 |
+
"name": "image_1",
|
103 |
+
"type": "IMAGE",
|
104 |
+
"link": 171
|
105 |
+
},
|
106 |
+
{
|
107 |
+
"name": "image_2",
|
108 |
+
"type": "IMAGE",
|
109 |
+
"link": 184
|
110 |
+
}
|
111 |
+
],
|
112 |
+
"outputs": [
|
113 |
+
{
|
114 |
+
"name": "images",
|
115 |
+
"type": "IMAGE",
|
116 |
+
"links": [
|
117 |
+
170
|
118 |
+
],
|
119 |
+
"slot_index": 0
|
120 |
+
}
|
121 |
+
],
|
122 |
+
"properties": {},
|
123 |
+
"widgets_values": [
|
124 |
+
2,
|
125 |
+
"right",
|
126 |
+
false,
|
127 |
+
null
|
128 |
+
]
|
129 |
+
},
|
130 |
+
{
|
131 |
+
"id": 60,
|
132 |
+
"type": "CogVideoDecode",
|
133 |
+
"pos": [
|
134 |
+
1518.4959716796875,
|
135 |
+
-16.81044578552246
|
136 |
+
],
|
137 |
+
"size": [
|
138 |
+
315,
|
139 |
+
198
|
140 |
+
],
|
141 |
+
"flags": {},
|
142 |
+
"order": 18,
|
143 |
+
"mode": 0,
|
144 |
+
"inputs": [
|
145 |
+
{
|
146 |
+
"name": "vae",
|
147 |
+
"type": "VAE",
|
148 |
+
"link": 132
|
149 |
+
},
|
150 |
+
{
|
151 |
+
"name": "samples",
|
152 |
+
"type": "LATENT",
|
153 |
+
"link": 148
|
154 |
+
}
|
155 |
+
],
|
156 |
+
"outputs": [
|
157 |
+
{
|
158 |
+
"name": "images",
|
159 |
+
"type": "IMAGE",
|
160 |
+
"links": [
|
161 |
+
184
|
162 |
+
],
|
163 |
+
"slot_index": 0
|
164 |
+
}
|
165 |
+
],
|
166 |
+
"properties": {
|
167 |
+
"Node name for S&R": "CogVideoDecode"
|
168 |
+
},
|
169 |
+
"widgets_values": [
|
170 |
+
true,
|
171 |
+
240,
|
172 |
+
360,
|
173 |
+
0.2,
|
174 |
+
0.2,
|
175 |
+
true
|
176 |
+
]
|
177 |
+
},
|
178 |
+
{
|
179 |
+
"id": 72,
|
180 |
+
"type": "CogVideoLoraSelect",
|
181 |
+
"pos": [
|
182 |
+
149.58236694335938,
|
183 |
+
-19.5003604888916
|
184 |
+
],
|
185 |
+
"size": [
|
186 |
+
429.9602355957031,
|
187 |
+
108.1800765991211
|
188 |
+
],
|
189 |
+
"flags": {},
|
190 |
+
"order": 1,
|
191 |
+
"mode": 0,
|
192 |
+
"inputs": [
|
193 |
+
{
|
194 |
+
"name": "prev_lora",
|
195 |
+
"type": "COGLORA",
|
196 |
+
"link": null,
|
197 |
+
"shape": 7
|
198 |
+
}
|
199 |
+
],
|
200 |
+
"outputs": [
|
201 |
+
{
|
202 |
+
"name": "lora",
|
203 |
+
"type": "COGLORA",
|
204 |
+
"links": [
|
205 |
+
174
|
206 |
+
],
|
207 |
+
"slot_index": 0
|
208 |
+
}
|
209 |
+
],
|
210 |
+
"properties": {
|
211 |
+
"Node name for S&R": "CogVideoLoraSelect"
|
212 |
+
},
|
213 |
+
"widgets_values": [
|
214 |
+
"I2V5B_final_i30000_lora_weights.safetensors",
|
215 |
+
1,
|
216 |
+
false
|
217 |
+
]
|
218 |
+
},
|
219 |
+
{
|
220 |
+
"id": 59,
|
221 |
+
"type": "DownloadAndLoadCogVideoModel",
|
222 |
+
"pos": [
|
223 |
+
620.1983032226562,
|
224 |
+
-39.41391372680664
|
225 |
+
],
|
226 |
+
"size": [
|
227 |
+
315,
|
228 |
+
218
|
229 |
+
],
|
230 |
+
"flags": {},
|
231 |
+
"order": 8,
|
232 |
+
"mode": 0,
|
233 |
+
"inputs": [
|
234 |
+
{
|
235 |
+
"name": "block_edit",
|
236 |
+
"type": "TRANSFORMERBLOCKS",
|
237 |
+
"link": null,
|
238 |
+
"shape": 7
|
239 |
+
},
|
240 |
+
{
|
241 |
+
"name": "lora",
|
242 |
+
"type": "COGLORA",
|
243 |
+
"link": 174,
|
244 |
+
"shape": 7
|
245 |
+
},
|
246 |
+
{
|
247 |
+
"name": "compile_args",
|
248 |
+
"type": "COMPILEARGS",
|
249 |
+
"link": null,
|
250 |
+
"shape": 7
|
251 |
+
}
|
252 |
+
],
|
253 |
+
"outputs": [
|
254 |
+
{
|
255 |
+
"name": "model",
|
256 |
+
"type": "COGVIDEOMODEL",
|
257 |
+
"links": [
|
258 |
+
144
|
259 |
+
]
|
260 |
+
},
|
261 |
+
{
|
262 |
+
"name": "vae",
|
263 |
+
"type": "VAE",
|
264 |
+
"links": [
|
265 |
+
132,
|
266 |
+
141,
|
267 |
+
165
|
268 |
+
],
|
269 |
+
"slot_index": 1
|
270 |
+
}
|
271 |
+
],
|
272 |
+
"properties": {
|
273 |
+
"Node name for S&R": "DownloadAndLoadCogVideoModel"
|
274 |
+
},
|
275 |
+
"widgets_values": [
|
276 |
+
"THUDM/CogVideoX-5b-I2V",
|
277 |
+
"bf16",
|
278 |
+
"disabled",
|
279 |
+
false,
|
280 |
+
"sageattn",
|
281 |
+
"main_device"
|
282 |
+
]
|
283 |
+
},
|
284 |
+
{
|
285 |
+
"id": 30,
|
286 |
+
"type": "CogVideoTextEncode",
|
287 |
+
"pos": [
|
288 |
+
493,
|
289 |
+
303
|
290 |
+
],
|
291 |
+
"size": [
|
292 |
+
471.90142822265625,
|
293 |
+
168.08047485351562
|
294 |
+
],
|
295 |
+
"flags": {},
|
296 |
+
"order": 7,
|
297 |
+
"mode": 0,
|
298 |
+
"inputs": [
|
299 |
+
{
|
300 |
+
"name": "clip",
|
301 |
+
"type": "CLIP",
|
302 |
+
"link": 54
|
303 |
+
}
|
304 |
+
],
|
305 |
+
"outputs": [
|
306 |
+
{
|
307 |
+
"name": "conditioning",
|
308 |
+
"type": "CONDITIONING",
|
309 |
+
"links": [
|
310 |
+
145
|
311 |
+
],
|
312 |
+
"slot_index": 0,
|
313 |
+
"shape": 3
|
314 |
+
},
|
315 |
+
{
|
316 |
+
"name": "clip",
|
317 |
+
"type": "CLIP",
|
318 |
+
"links": [
|
319 |
+
149
|
320 |
+
],
|
321 |
+
"slot_index": 1
|
322 |
+
}
|
323 |
+
],
|
324 |
+
"properties": {
|
325 |
+
"Node name for S&R": "CogVideoTextEncode"
|
326 |
+
},
|
327 |
+
"widgets_values": [
|
328 |
+
"mouse knight walking in a forest",
|
329 |
+
1,
|
330 |
+
false
|
331 |
+
]
|
332 |
+
},
|
333 |
+
{
|
334 |
+
"id": 63,
|
335 |
+
"type": "CogVideoSampler",
|
336 |
+
"pos": [
|
337 |
+
1144.7025146484375,
|
338 |
+
55.98257064819336
|
339 |
+
],
|
340 |
+
"size": [
|
341 |
+
330,
|
342 |
+
594
|
343 |
+
],
|
344 |
+
"flags": {},
|
345 |
+
"order": 17,
|
346 |
+
"mode": 0,
|
347 |
+
"inputs": [
|
348 |
+
{
|
349 |
+
"name": "model",
|
350 |
+
"type": "COGVIDEOMODEL",
|
351 |
+
"link": 144
|
352 |
+
},
|
353 |
+
{
|
354 |
+
"name": "positive",
|
355 |
+
"type": "CONDITIONING",
|
356 |
+
"link": 145
|
357 |
+
},
|
358 |
+
{
|
359 |
+
"name": "negative",
|
360 |
+
"type": "CONDITIONING",
|
361 |
+
"link": 146
|
362 |
+
},
|
363 |
+
{
|
364 |
+
"name": "samples",
|
365 |
+
"type": "LATENT",
|
366 |
+
"link": 164,
|
367 |
+
"shape": 7
|
368 |
+
},
|
369 |
+
{
|
370 |
+
"name": "image_cond_latents",
|
371 |
+
"type": "LATENT",
|
372 |
+
"link": 147,
|
373 |
+
"shape": 7
|
374 |
+
},
|
375 |
+
{
|
376 |
+
"name": "context_options",
|
377 |
+
"type": "COGCONTEXT",
|
378 |
+
"link": null,
|
379 |
+
"shape": 7
|
380 |
+
},
|
381 |
+
{
|
382 |
+
"name": "controlnet",
|
383 |
+
"type": "COGVIDECONTROLNET",
|
384 |
+
"link": null,
|
385 |
+
"shape": 7
|
386 |
+
},
|
387 |
+
{
|
388 |
+
"name": "tora_trajectory",
|
389 |
+
"type": "TORAFEATURES",
|
390 |
+
"link": null,
|
391 |
+
"shape": 7
|
392 |
+
},
|
393 |
+
{
|
394 |
+
"name": "fastercache",
|
395 |
+
"type": "FASTERCACHEARGS",
|
396 |
+
"link": null,
|
397 |
+
"shape": 7
|
398 |
+
},
|
399 |
+
{
|
400 |
+
"name": "feta_args",
|
401 |
+
"type": "FETAARGS",
|
402 |
+
"link": null,
|
403 |
+
"shape": 7
|
404 |
+
}
|
405 |
+
],
|
406 |
+
"outputs": [
|
407 |
+
{
|
408 |
+
"name": "samples",
|
409 |
+
"type": "LATENT",
|
410 |
+
"links": [
|
411 |
+
148
|
412 |
+
]
|
413 |
+
}
|
414 |
+
],
|
415 |
+
"properties": {
|
416 |
+
"Node name for S&R": "CogVideoSampler"
|
417 |
+
},
|
418 |
+
"widgets_values": [
|
419 |
+
49,
|
420 |
+
25,
|
421 |
+
6,
|
422 |
+
0,
|
423 |
+
"fixed",
|
424 |
+
"CogVideoXDDIM",
|
425 |
+
1
|
426 |
+
]
|
427 |
+
},
|
428 |
+
{
|
429 |
+
"id": 79,
|
430 |
+
"type": "Note",
|
431 |
+
"pos": [
|
432 |
+
141.44003295898438,
|
433 |
+
-129.33815002441406
|
434 |
+
],
|
435 |
+
"size": [
|
436 |
+
436.1673889160156,
|
437 |
+
58
|
438 |
+
],
|
439 |
+
"flags": {},
|
440 |
+
"order": 2,
|
441 |
+
"mode": 0,
|
442 |
+
"inputs": [],
|
443 |
+
"outputs": [],
|
444 |
+
"properties": {},
|
445 |
+
"widgets_values": [
|
446 |
+
"https://huggingface.co/VGenAI-Netflix-Eyeline-Research/Go-with-the-Flow/blob/main/I2V5B_final_i38800_nearest_lora_weights.safetensors"
|
447 |
+
],
|
448 |
+
"color": "#432",
|
449 |
+
"bgcolor": "#653"
|
450 |
+
},
|
451 |
+
{
|
452 |
+
"id": 76,
|
453 |
+
"type": "VHS_VideoCombine",
|
454 |
+
"pos": [
|
455 |
+
1955.22119140625,
|
456 |
+
841.7718505859375
|
457 |
+
],
|
458 |
+
"size": [
|
459 |
+
1141.2095947265625,
|
460 |
+
1095.4730224609375
|
461 |
+
],
|
462 |
+
"flags": {},
|
463 |
+
"order": 16,
|
464 |
+
"mode": 2,
|
465 |
+
"inputs": [
|
466 |
+
{
|
467 |
+
"name": "images",
|
468 |
+
"type": "IMAGE",
|
469 |
+
"link": 185
|
470 |
+
},
|
471 |
+
{
|
472 |
+
"name": "audio",
|
473 |
+
"type": "AUDIO",
|
474 |
+
"link": null,
|
475 |
+
"shape": 7
|
476 |
+
},
|
477 |
+
{
|
478 |
+
"name": "meta_batch",
|
479 |
+
"type": "VHS_BatchManager",
|
480 |
+
"link": null,
|
481 |
+
"shape": 7
|
482 |
+
},
|
483 |
+
{
|
484 |
+
"name": "vae",
|
485 |
+
"type": "VAE",
|
486 |
+
"link": null,
|
487 |
+
"shape": 7
|
488 |
+
}
|
489 |
+
],
|
490 |
+
"outputs": [
|
491 |
+
{
|
492 |
+
"name": "Filenames",
|
493 |
+
"type": "VHS_FILENAMES",
|
494 |
+
"links": null,
|
495 |
+
"shape": 3
|
496 |
+
}
|
497 |
+
],
|
498 |
+
"properties": {
|
499 |
+
"Node name for S&R": "VHS_VideoCombine"
|
500 |
+
},
|
501 |
+
"widgets_values": {
|
502 |
+
"frame_rate": 8,
|
503 |
+
"loop_count": 0,
|
504 |
+
"filename_prefix": "CogVideoX-I2V",
|
505 |
+
"format": "video/h264-mp4",
|
506 |
+
"pix_fmt": "yuv420p",
|
507 |
+
"crf": 19,
|
508 |
+
"save_metadata": true,
|
509 |
+
"trim_to_audio": false,
|
510 |
+
"pingpong": false,
|
511 |
+
"save_output": false,
|
512 |
+
"videopreview": {
|
513 |
+
"hidden": false,
|
514 |
+
"paused": false,
|
515 |
+
"params": {
|
516 |
+
"filename": "CogVideoX-I2V_00001.mp4",
|
517 |
+
"subfolder": "",
|
518 |
+
"type": "temp",
|
519 |
+
"format": "video/h264-mp4",
|
520 |
+
"frame_rate": 8,
|
521 |
+
"workflow": "CogVideoX-I2V_00001.png",
|
522 |
+
"fullpath": "N:\\AI\\ComfyUI\\temp\\CogVideoX-I2V_00001.mp4"
|
523 |
+
},
|
524 |
+
"muted": false
|
525 |
+
}
|
526 |
+
}
|
527 |
+
},
|
528 |
+
{
|
529 |
+
"id": 80,
|
530 |
+
"type": "Note",
|
531 |
+
"pos": [
|
532 |
+
1648.847900390625,
|
533 |
+
1100.5545654296875
|
534 |
+
],
|
535 |
+
"size": [
|
536 |
+
249.00543212890625,
|
537 |
+
58
|
538 |
+
],
|
539 |
+
"flags": {},
|
540 |
+
"order": 3,
|
541 |
+
"mode": 0,
|
542 |
+
"inputs": [],
|
543 |
+
"outputs": [],
|
544 |
+
"properties": {},
|
545 |
+
"widgets_values": [
|
546 |
+
"This is just for testing the noise"
|
547 |
+
],
|
548 |
+
"color": "#432",
|
549 |
+
"bgcolor": "#653"
|
550 |
+
},
|
551 |
+
{
|
552 |
+
"id": 73,
|
553 |
+
"type": "CogVideoDecode",
|
554 |
+
"pos": [
|
555 |
+
1567.16064453125,
|
556 |
+
842.2813110351562
|
557 |
+
],
|
558 |
+
"size": [
|
559 |
+
315,
|
560 |
+
198
|
561 |
+
],
|
562 |
+
"flags": {},
|
563 |
+
"order": 14,
|
564 |
+
"mode": 2,
|
565 |
+
"inputs": [
|
566 |
+
{
|
567 |
+
"name": "vae",
|
568 |
+
"type": "VAE",
|
569 |
+
"link": 165
|
570 |
+
},
|
571 |
+
{
|
572 |
+
"name": "samples",
|
573 |
+
"type": "LATENT",
|
574 |
+
"link": 167
|
575 |
+
}
|
576 |
+
],
|
577 |
+
"outputs": [
|
578 |
+
{
|
579 |
+
"name": "images",
|
580 |
+
"type": "IMAGE",
|
581 |
+
"links": [
|
582 |
+
185
|
583 |
+
],
|
584 |
+
"slot_index": 0
|
585 |
+
}
|
586 |
+
],
|
587 |
+
"properties": {
|
588 |
+
"Node name for S&R": "CogVideoDecode"
|
589 |
+
},
|
590 |
+
"widgets_values": [
|
591 |
+
true,
|
592 |
+
240,
|
593 |
+
360,
|
594 |
+
0.2,
|
595 |
+
0.2,
|
596 |
+
true
|
597 |
+
]
|
598 |
+
},
|
599 |
+
{
|
600 |
+
"id": 68,
|
601 |
+
"type": "GetImageSizeAndCount",
|
602 |
+
"pos": [
|
603 |
+
-195.5599822998047,
|
604 |
+
1273.8702392578125
|
605 |
+
],
|
606 |
+
"size": [
|
607 |
+
277.20001220703125,
|
608 |
+
86
|
609 |
+
],
|
610 |
+
"flags": {},
|
611 |
+
"order": 9,
|
612 |
+
"mode": 0,
|
613 |
+
"inputs": [
|
614 |
+
{
|
615 |
+
"name": "image",
|
616 |
+
"type": "IMAGE",
|
617 |
+
"link": 181
|
618 |
+
}
|
619 |
+
],
|
620 |
+
"outputs": [
|
621 |
+
{
|
622 |
+
"name": "image",
|
623 |
+
"type": "IMAGE",
|
624 |
+
"links": [
|
625 |
+
178
|
626 |
+
],
|
627 |
+
"slot_index": 0
|
628 |
+
},
|
629 |
+
{
|
630 |
+
"name": "1024 width",
|
631 |
+
"type": "INT",
|
632 |
+
"links": null
|
633 |
+
},
|
634 |
+
{
|
635 |
+
"name": "768 height",
|
636 |
+
"type": "INT",
|
637 |
+
"links": null
|
638 |
+
},
|
639 |
+
{
|
640 |
+
"name": "49 count",
|
641 |
+
"type": "INT",
|
642 |
+
"links": null
|
643 |
+
}
|
644 |
+
],
|
645 |
+
"properties": {
|
646 |
+
"Node name for S&R": "GetImageSizeAndCount"
|
647 |
+
}
|
648 |
+
},
|
649 |
+
{
|
650 |
+
"id": 62,
|
651 |
+
"type": "CogVideoImageEncode",
|
652 |
+
"pos": [
|
653 |
+
612.8922729492188,
|
654 |
+
751.6295776367188
|
655 |
+
],
|
656 |
+
"size": [
|
657 |
+
315,
|
658 |
+
194
|
659 |
+
],
|
660 |
+
"flags": {},
|
661 |
+
"order": 15,
|
662 |
+
"mode": 0,
|
663 |
+
"inputs": [
|
664 |
+
{
|
665 |
+
"name": "vae",
|
666 |
+
"type": "VAE",
|
667 |
+
"link": 141
|
668 |
+
},
|
669 |
+
{
|
670 |
+
"name": "start_image",
|
671 |
+
"type": "IMAGE",
|
672 |
+
"link": 190
|
673 |
+
},
|
674 |
+
{
|
675 |
+
"name": "end_image",
|
676 |
+
"type": "IMAGE",
|
677 |
+
"link": null,
|
678 |
+
"shape": 7
|
679 |
+
}
|
680 |
+
],
|
681 |
+
"outputs": [
|
682 |
+
{
|
683 |
+
"name": "samples",
|
684 |
+
"type": "LATENT",
|
685 |
+
"links": [
|
686 |
+
147
|
687 |
+
]
|
688 |
+
}
|
689 |
+
],
|
690 |
+
"properties": {
|
691 |
+
"Node name for S&R": "CogVideoImageEncode"
|
692 |
+
},
|
693 |
+
"widgets_values": [
|
694 |
+
false,
|
695 |
+
0,
|
696 |
+
1,
|
697 |
+
0,
|
698 |
+
1
|
699 |
+
]
|
700 |
+
},
|
701 |
+
{
|
702 |
+
"id": 82,
|
703 |
+
"type": "Note",
|
704 |
+
"pos": [
|
705 |
+
-533.0764770507812,
|
706 |
+
1158.188232421875
|
707 |
+
],
|
708 |
+
"size": [
|
709 |
+
364.71002197265625,
|
710 |
+
58
|
711 |
+
],
|
712 |
+
"flags": {},
|
713 |
+
"order": 4,
|
714 |
+
"mode": 0,
|
715 |
+
"inputs": [],
|
716 |
+
"outputs": [],
|
717 |
+
"properties": {},
|
718 |
+
"widgets_values": [
|
719 |
+
"Input video that's used to create the noise"
|
720 |
+
],
|
721 |
+
"color": "#432",
|
722 |
+
"bgcolor": "#653"
|
723 |
+
},
|
724 |
+
{
|
725 |
+
"id": 64,
|
726 |
+
"type": "GetWarpedNoiseFromVideo",
|
727 |
+
"pos": [
|
728 |
+
674.1111450195312,
|
729 |
+
1289.6090087890625
|
730 |
+
],
|
731 |
+
"size": [
|
732 |
+
315,
|
733 |
+
222
|
734 |
+
],
|
735 |
+
"flags": {},
|
736 |
+
"order": 12,
|
737 |
+
"mode": 0,
|
738 |
+
"inputs": [
|
739 |
+
{
|
740 |
+
"name": "images",
|
741 |
+
"type": "IMAGE",
|
742 |
+
"link": 161
|
743 |
+
}
|
744 |
+
],
|
745 |
+
"outputs": [
|
746 |
+
{
|
747 |
+
"name": "noise",
|
748 |
+
"type": "LATENT",
|
749 |
+
"links": [
|
750 |
+
164,
|
751 |
+
167
|
752 |
+
],
|
753 |
+
"slot_index": 0
|
754 |
+
},
|
755 |
+
{
|
756 |
+
"name": "visualization",
|
757 |
+
"type": "IMAGE",
|
758 |
+
"links": null
|
759 |
+
}
|
760 |
+
],
|
761 |
+
"properties": {
|
762 |
+
"Node name for S&R": "GetWarpedNoiseFromVideo"
|
763 |
+
},
|
764 |
+
"widgets_values": [
|
765 |
+
16,
|
766 |
+
"nearest",
|
767 |
+
13,
|
768 |
+
0.5,
|
769 |
+
"BCTHW",
|
770 |
+
99026504067718,
|
771 |
+
"fixed"
|
772 |
+
]
|
773 |
+
},
|
774 |
+
{
|
775 |
+
"id": 83,
|
776 |
+
"type": "Note",
|
777 |
+
"pos": [
|
778 |
+
679.4560546875,
|
779 |
+
1179.797607421875
|
780 |
+
],
|
781 |
+
"size": [
|
782 |
+
293.1480407714844,
|
783 |
+
58
|
784 |
+
],
|
785 |
+
"flags": {},
|
786 |
+
"order": 5,
|
787 |
+
"mode": 0,
|
788 |
+
"inputs": [],
|
789 |
+
"outputs": [],
|
790 |
+
"properties": {},
|
791 |
+
"widgets_values": [
|
792 |
+
"https://github.com/kijai/ComfyUI-VideoNoiseWarp"
|
793 |
+
],
|
794 |
+
"color": "#432",
|
795 |
+
"bgcolor": "#653"
|
796 |
+
},
|
797 |
+
{
|
798 |
+
"id": 69,
|
799 |
+
"type": "VHS_LoadVideo",
|
800 |
+
"pos": [
|
801 |
+
-536.2808837890625,
|
802 |
+
1265.4254150390625
|
803 |
+
],
|
804 |
+
"size": [
|
805 |
+
247.455078125,
|
806 |
+
446.3408203125
|
807 |
+
],
|
808 |
+
"flags": {},
|
809 |
+
"order": 6,
|
810 |
+
"mode": 0,
|
811 |
+
"inputs": [
|
812 |
+
{
|
813 |
+
"name": "meta_batch",
|
814 |
+
"type": "VHS_BatchManager",
|
815 |
+
"link": null,
|
816 |
+
"shape": 7
|
817 |
+
},
|
818 |
+
{
|
819 |
+
"name": "vae",
|
820 |
+
"type": "VAE",
|
821 |
+
"link": null,
|
822 |
+
"shape": 7
|
823 |
+
}
|
824 |
+
],
|
825 |
+
"outputs": [
|
826 |
+
{
|
827 |
+
"name": "IMAGE",
|
828 |
+
"type": "IMAGE",
|
829 |
+
"links": [
|
830 |
+
181
|
831 |
+
],
|
832 |
+
"slot_index": 0
|
833 |
+
},
|
834 |
+
{
|
835 |
+
"name": "frame_count",
|
836 |
+
"type": "INT",
|
837 |
+
"links": null
|
838 |
+
},
|
839 |
+
{
|
840 |
+
"name": "audio",
|
841 |
+
"type": "AUDIO",
|
842 |
+
"links": null
|
843 |
+
},
|
844 |
+
{
|
845 |
+
"name": "video_info",
|
846 |
+
"type": "VHS_VIDEOINFO",
|
847 |
+
"links": null
|
848 |
+
}
|
849 |
+
],
|
850 |
+
"properties": {
|
851 |
+
"Node name for S&R": "VHS_LoadVideo"
|
852 |
+
},
|
853 |
+
"widgets_values": {
|
854 |
+
"video": "AnimateDiff_00023 (16).mp4",
|
855 |
+
"force_rate": 0,
|
856 |
+
"force_size": "Disabled",
|
857 |
+
"custom_width": 512,
|
858 |
+
"custom_height": 512,
|
859 |
+
"frame_load_cap": 0,
|
860 |
+
"skip_first_frames": 0,
|
861 |
+
"select_every_nth": 1,
|
862 |
+
"choose video to upload": "image",
|
863 |
+
"videopreview": {
|
864 |
+
"hidden": false,
|
865 |
+
"paused": false,
|
866 |
+
"params": {
|
867 |
+
"force_rate": 0,
|
868 |
+
"frame_load_cap": 0,
|
869 |
+
"skip_first_frames": 0,
|
870 |
+
"select_every_nth": 1,
|
871 |
+
"filename": "AnimateDiff_00023 (16).mp4",
|
872 |
+
"type": "input",
|
873 |
+
"format": "video/mp4"
|
874 |
+
},
|
875 |
+
"muted": false
|
876 |
+
}
|
877 |
+
}
|
878 |
+
},
|
879 |
+
{
|
880 |
+
"id": 44,
|
881 |
+
"type": "VHS_VideoCombine",
|
882 |
+
"pos": [
|
883 |
+
2071.7626953125,
|
884 |
+
-69.11408233642578
|
885 |
+
],
|
886 |
+
"size": [
|
887 |
+
1141.2095947265625,
|
888 |
+
721.7365112304688
|
889 |
+
],
|
890 |
+
"flags": {},
|
891 |
+
"order": 20,
|
892 |
+
"mode": 0,
|
893 |
+
"inputs": [
|
894 |
+
{
|
895 |
+
"name": "images",
|
896 |
+
"type": "IMAGE",
|
897 |
+
"link": 170
|
898 |
+
},
|
899 |
+
{
|
900 |
+
"name": "audio",
|
901 |
+
"type": "AUDIO",
|
902 |
+
"link": null,
|
903 |
+
"shape": 7
|
904 |
+
},
|
905 |
+
{
|
906 |
+
"name": "meta_batch",
|
907 |
+
"type": "VHS_BatchManager",
|
908 |
+
"link": null,
|
909 |
+
"shape": 7
|
910 |
+
},
|
911 |
+
{
|
912 |
+
"name": "vae",
|
913 |
+
"type": "VAE",
|
914 |
+
"link": null,
|
915 |
+
"shape": 7
|
916 |
+
}
|
917 |
+
],
|
918 |
+
"outputs": [
|
919 |
+
{
|
920 |
+
"name": "Filenames",
|
921 |
+
"type": "VHS_FILENAMES",
|
922 |
+
"links": null,
|
923 |
+
"shape": 3
|
924 |
+
}
|
925 |
+
],
|
926 |
+
"properties": {
|
927 |
+
"Node name for S&R": "VHS_VideoCombine"
|
928 |
+
},
|
929 |
+
"widgets_values": {
|
930 |
+
"frame_rate": 8,
|
931 |
+
"loop_count": 0,
|
932 |
+
"filename_prefix": "CogVideoX_I2V_NoiseWarp",
|
933 |
+
"format": "video/h264-mp4",
|
934 |
+
"pix_fmt": "yuv420p",
|
935 |
+
"crf": 19,
|
936 |
+
"save_metadata": true,
|
937 |
+
"trim_to_audio": false,
|
938 |
+
"pingpong": false,
|
939 |
+
"save_output": false,
|
940 |
+
"videopreview": {
|
941 |
+
"hidden": false,
|
942 |
+
"paused": false,
|
943 |
+
"params": {
|
944 |
+
"filename": "CogVideoX-I2V_00002.mp4",
|
945 |
+
"subfolder": "",
|
946 |
+
"type": "temp",
|
947 |
+
"format": "video/h264-mp4",
|
948 |
+
"frame_rate": 8,
|
949 |
+
"workflow": "CogVideoX-I2V_00002.png",
|
950 |
+
"fullpath": "N:\\AI\\ComfyUI\\temp\\CogVideoX-I2V_00002.mp4"
|
951 |
+
},
|
952 |
+
"muted": false
|
953 |
+
}
|
954 |
+
}
|
955 |
+
},
|
956 |
+
{
|
957 |
+
"id": 71,
|
958 |
+
"type": "ImageResizeKJ",
|
959 |
+
"pos": [
|
960 |
+
204.58009338378906,
|
961 |
+
1289.261474609375
|
962 |
+
],
|
963 |
+
"size": [
|
964 |
+
315,
|
965 |
+
266
|
966 |
+
],
|
967 |
+
"flags": {},
|
968 |
+
"order": 11,
|
969 |
+
"mode": 0,
|
970 |
+
"inputs": [
|
971 |
+
{
|
972 |
+
"name": "image",
|
973 |
+
"type": "IMAGE",
|
974 |
+
"link": 178
|
975 |
+
},
|
976 |
+
{
|
977 |
+
"name": "get_image_size",
|
978 |
+
"type": "IMAGE",
|
979 |
+
"link": null,
|
980 |
+
"shape": 7
|
981 |
+
},
|
982 |
+
{
|
983 |
+
"name": "width_input",
|
984 |
+
"type": "INT",
|
985 |
+
"link": null,
|
986 |
+
"widget": {
|
987 |
+
"name": "width_input"
|
988 |
+
},
|
989 |
+
"shape": 7
|
990 |
+
},
|
991 |
+
{
|
992 |
+
"name": "height_input",
|
993 |
+
"type": "INT",
|
994 |
+
"link": null,
|
995 |
+
"widget": {
|
996 |
+
"name": "height_input"
|
997 |
+
},
|
998 |
+
"shape": 7
|
999 |
+
}
|
1000 |
+
],
|
1001 |
+
"outputs": [
|
1002 |
+
{
|
1003 |
+
"name": "IMAGE",
|
1004 |
+
"type": "IMAGE",
|
1005 |
+
"links": [
|
1006 |
+
161,
|
1007 |
+
171,
|
1008 |
+
189
|
1009 |
+
],
|
1010 |
+
"slot_index": 0,
|
1011 |
+
"shape": 3
|
1012 |
+
},
|
1013 |
+
{
|
1014 |
+
"name": "width",
|
1015 |
+
"type": "INT",
|
1016 |
+
"links": null,
|
1017 |
+
"shape": 3
|
1018 |
+
},
|
1019 |
+
{
|
1020 |
+
"name": "height",
|
1021 |
+
"type": "INT",
|
1022 |
+
"links": null,
|
1023 |
+
"shape": 3
|
1024 |
+
}
|
1025 |
+
],
|
1026 |
+
"properties": {
|
1027 |
+
"Node name for S&R": "ImageResizeKJ"
|
1028 |
+
},
|
1029 |
+
"widgets_values": [
|
1030 |
+
720,
|
1031 |
+
480,
|
1032 |
+
"lanczos",
|
1033 |
+
false,
|
1034 |
+
16,
|
1035 |
+
0,
|
1036 |
+
0,
|
1037 |
+
"disabled"
|
1038 |
+
]
|
1039 |
+
},
|
1040 |
+
{
|
1041 |
+
"id": 84,
|
1042 |
+
"type": "GetImageRangeFromBatch",
|
1043 |
+
"pos": [
|
1044 |
+
197.0398712158203,
|
1045 |
+
1077.9952392578125
|
1046 |
+
],
|
1047 |
+
"size": [
|
1048 |
+
340.2047424316406,
|
1049 |
+
102
|
1050 |
+
],
|
1051 |
+
"flags": {},
|
1052 |
+
"order": 13,
|
1053 |
+
"mode": 0,
|
1054 |
+
"inputs": [
|
1055 |
+
{
|
1056 |
+
"name": "images",
|
1057 |
+
"type": "IMAGE",
|
1058 |
+
"link": 189,
|
1059 |
+
"shape": 7
|
1060 |
+
},
|
1061 |
+
{
|
1062 |
+
"name": "masks",
|
1063 |
+
"type": "MASK",
|
1064 |
+
"link": null,
|
1065 |
+
"shape": 7
|
1066 |
+
}
|
1067 |
+
],
|
1068 |
+
"outputs": [
|
1069 |
+
{
|
1070 |
+
"name": "IMAGE",
|
1071 |
+
"type": "IMAGE",
|
1072 |
+
"links": [
|
1073 |
+
190
|
1074 |
+
],
|
1075 |
+
"slot_index": 0
|
1076 |
+
},
|
1077 |
+
{
|
1078 |
+
"name": "MASK",
|
1079 |
+
"type": "MASK",
|
1080 |
+
"links": null
|
1081 |
+
}
|
1082 |
+
],
|
1083 |
+
"properties": {
|
1084 |
+
"Node name for S&R": "GetImageRangeFromBatch"
|
1085 |
+
},
|
1086 |
+
"widgets_values": [
|
1087 |
+
0,
|
1088 |
+
1
|
1089 |
+
]
|
1090 |
+
}
|
1091 |
+
],
|
1092 |
+
"links": [
|
1093 |
+
[
|
1094 |
+
54,
|
1095 |
+
20,
|
1096 |
+
0,
|
1097 |
+
30,
|
1098 |
+
0,
|
1099 |
+
"CLIP"
|
1100 |
+
],
|
1101 |
+
[
|
1102 |
+
132,
|
1103 |
+
59,
|
1104 |
+
1,
|
1105 |
+
60,
|
1106 |
+
0,
|
1107 |
+
"VAE"
|
1108 |
+
],
|
1109 |
+
[
|
1110 |
+
141,
|
1111 |
+
59,
|
1112 |
+
1,
|
1113 |
+
62,
|
1114 |
+
0,
|
1115 |
+
"VAE"
|
1116 |
+
],
|
1117 |
+
[
|
1118 |
+
144,
|
1119 |
+
59,
|
1120 |
+
0,
|
1121 |
+
63,
|
1122 |
+
0,
|
1123 |
+
"COGVIDEOMODEL"
|
1124 |
+
],
|
1125 |
+
[
|
1126 |
+
145,
|
1127 |
+
30,
|
1128 |
+
0,
|
1129 |
+
63,
|
1130 |
+
1,
|
1131 |
+
"CONDITIONING"
|
1132 |
+
],
|
1133 |
+
[
|
1134 |
+
146,
|
1135 |
+
31,
|
1136 |
+
0,
|
1137 |
+
63,
|
1138 |
+
2,
|
1139 |
+
"CONDITIONING"
|
1140 |
+
],
|
1141 |
+
[
|
1142 |
+
147,
|
1143 |
+
62,
|
1144 |
+
0,
|
1145 |
+
63,
|
1146 |
+
4,
|
1147 |
+
"LATENT"
|
1148 |
+
],
|
1149 |
+
[
|
1150 |
+
148,
|
1151 |
+
63,
|
1152 |
+
0,
|
1153 |
+
60,
|
1154 |
+
1,
|
1155 |
+
"LATENT"
|
1156 |
+
],
|
1157 |
+
[
|
1158 |
+
149,
|
1159 |
+
30,
|
1160 |
+
1,
|
1161 |
+
31,
|
1162 |
+
0,
|
1163 |
+
"CLIP"
|
1164 |
+
],
|
1165 |
+
[
|
1166 |
+
161,
|
1167 |
+
71,
|
1168 |
+
0,
|
1169 |
+
64,
|
1170 |
+
0,
|
1171 |
+
"IMAGE"
|
1172 |
+
],
|
1173 |
+
[
|
1174 |
+
164,
|
1175 |
+
64,
|
1176 |
+
0,
|
1177 |
+
63,
|
1178 |
+
3,
|
1179 |
+
"LATENT"
|
1180 |
+
],
|
1181 |
+
[
|
1182 |
+
165,
|
1183 |
+
59,
|
1184 |
+
1,
|
1185 |
+
73,
|
1186 |
+
0,
|
1187 |
+
"VAE"
|
1188 |
+
],
|
1189 |
+
[
|
1190 |
+
167,
|
1191 |
+
64,
|
1192 |
+
0,
|
1193 |
+
73,
|
1194 |
+
1,
|
1195 |
+
"LATENT"
|
1196 |
+
],
|
1197 |
+
[
|
1198 |
+
170,
|
1199 |
+
74,
|
1200 |
+
0,
|
1201 |
+
44,
|
1202 |
+
0,
|
1203 |
+
"IMAGE"
|
1204 |
+
],
|
1205 |
+
[
|
1206 |
+
171,
|
1207 |
+
71,
|
1208 |
+
0,
|
1209 |
+
74,
|
1210 |
+
0,
|
1211 |
+
"IMAGE"
|
1212 |
+
],
|
1213 |
+
[
|
1214 |
+
174,
|
1215 |
+
72,
|
1216 |
+
0,
|
1217 |
+
59,
|
1218 |
+
1,
|
1219 |
+
"COGLORA"
|
1220 |
+
],
|
1221 |
+
[
|
1222 |
+
178,
|
1223 |
+
68,
|
1224 |
+
0,
|
1225 |
+
71,
|
1226 |
+
0,
|
1227 |
+
"IMAGE"
|
1228 |
+
],
|
1229 |
+
[
|
1230 |
+
181,
|
1231 |
+
69,
|
1232 |
+
0,
|
1233 |
+
68,
|
1234 |
+
0,
|
1235 |
+
"IMAGE"
|
1236 |
+
],
|
1237 |
+
[
|
1238 |
+
184,
|
1239 |
+
60,
|
1240 |
+
0,
|
1241 |
+
74,
|
1242 |
+
1,
|
1243 |
+
"IMAGE"
|
1244 |
+
],
|
1245 |
+
[
|
1246 |
+
185,
|
1247 |
+
73,
|
1248 |
+
0,
|
1249 |
+
76,
|
1250 |
+
0,
|
1251 |
+
"IMAGE"
|
1252 |
+
],
|
1253 |
+
[
|
1254 |
+
189,
|
1255 |
+
71,
|
1256 |
+
0,
|
1257 |
+
84,
|
1258 |
+
0,
|
1259 |
+
"IMAGE"
|
1260 |
+
],
|
1261 |
+
[
|
1262 |
+
190,
|
1263 |
+
84,
|
1264 |
+
0,
|
1265 |
+
62,
|
1266 |
+
1,
|
1267 |
+
"IMAGE"
|
1268 |
+
]
|
1269 |
+
],
|
1270 |
+
"groups": [],
|
1271 |
+
"config": {},
|
1272 |
+
"extra": {
|
1273 |
+
"ds": {
|
1274 |
+
"scale": 0.6115909044841579,
|
1275 |
+
"offset": [
|
1276 |
+
1276.2661497783536,
|
1277 |
+
-1.7440717555266154
|
1278 |
+
]
|
1279 |
+
},
|
1280 |
+
"node_versions": {
|
1281 |
+
"ComfyUI-CogVideoXWrapper": "8c5e4f812d869653a6c201af0dcd6249c18b3231",
|
1282 |
+
"comfy-core": "0.3.12",
|
1283 |
+
"ComfyUI-KJNodes": "c9c8dcd5e7ed2f7669f130a5ced1e3005264a2de",
|
1284 |
+
"ComfyUI-VideoHelperSuite": "c47b10ca1798b4925ff5a5f07d80c51ca80a837d",
|
1285 |
+
"ComfyUI-NoiseWarp": "8c5e4f812d869653a6c201af0dcd6249c18b3231"
|
1286 |
+
},
|
1287 |
+
"VHS_latentpreview": true,
|
1288 |
+
"VHS_latentpreviewrate": 0
|
1289 |
+
},
|
1290 |
+
"version": 0.4
|
1291 |
+
}
|
custom_nodes/ComfyUI-CogVideoXWrapper/example_workflows/cogvideox_1_0_5b_T2V_02.json
ADDED
@@ -0,0 +1,529 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"last_node_id": 37,
|
3 |
+
"last_link_id": 72,
|
4 |
+
"nodes": [
|
5 |
+
{
|
6 |
+
"id": 30,
|
7 |
+
"type": "CogVideoTextEncode",
|
8 |
+
"pos": {
|
9 |
+
"0": 500,
|
10 |
+
"1": 308
|
11 |
+
},
|
12 |
+
"size": [
|
13 |
+
470.99399664051055,
|
14 |
+
237.5088638951354
|
15 |
+
],
|
16 |
+
"flags": {},
|
17 |
+
"order": 3,
|
18 |
+
"mode": 0,
|
19 |
+
"inputs": [
|
20 |
+
{
|
21 |
+
"name": "clip",
|
22 |
+
"type": "CLIP",
|
23 |
+
"link": 54
|
24 |
+
}
|
25 |
+
],
|
26 |
+
"outputs": [
|
27 |
+
{
|
28 |
+
"name": "conditioning",
|
29 |
+
"type": "CONDITIONING",
|
30 |
+
"links": [
|
31 |
+
67
|
32 |
+
],
|
33 |
+
"slot_index": 0,
|
34 |
+
"shape": 3
|
35 |
+
},
|
36 |
+
{
|
37 |
+
"name": "clip",
|
38 |
+
"type": "CLIP",
|
39 |
+
"links": [
|
40 |
+
65
|
41 |
+
],
|
42 |
+
"slot_index": 1
|
43 |
+
}
|
44 |
+
],
|
45 |
+
"properties": {
|
46 |
+
"Node name for S&R": "CogVideoTextEncode"
|
47 |
+
},
|
48 |
+
"widgets_values": [
|
49 |
+
"A golden retriever, sporting sleek black sunglasses, with its lengthy fur flowing in the breeze, sprints playfully across a rooftop terrace, recently refreshed by a light rain. The scene unfolds from a distance, the dog's energetic bounds growing larger as it approaches the camera, its tail wagging with unrestrained joy, while droplets of water glisten on the concrete behind it. The overcast sky provides a dramatic backdrop, emphasizing the vibrant golden coat of the canine as it dashes towards the viewer.\n\n",
|
50 |
+
1,
|
51 |
+
false
|
52 |
+
]
|
53 |
+
},
|
54 |
+
{
|
55 |
+
"id": 31,
|
56 |
+
"type": "CogVideoTextEncode",
|
57 |
+
"pos": {
|
58 |
+
"0": 503,
|
59 |
+
"1": 602
|
60 |
+
},
|
61 |
+
"size": [
|
62 |
+
464.4980515341475,
|
63 |
+
169.87479027400514
|
64 |
+
],
|
65 |
+
"flags": {},
|
66 |
+
"order": 4,
|
67 |
+
"mode": 0,
|
68 |
+
"inputs": [
|
69 |
+
{
|
70 |
+
"name": "clip",
|
71 |
+
"type": "CLIP",
|
72 |
+
"link": 65
|
73 |
+
}
|
74 |
+
],
|
75 |
+
"outputs": [
|
76 |
+
{
|
77 |
+
"name": "conditioning",
|
78 |
+
"type": "CONDITIONING",
|
79 |
+
"links": [
|
80 |
+
68
|
81 |
+
],
|
82 |
+
"slot_index": 0,
|
83 |
+
"shape": 3
|
84 |
+
},
|
85 |
+
{
|
86 |
+
"name": "clip",
|
87 |
+
"type": "CLIP",
|
88 |
+
"links": null
|
89 |
+
}
|
90 |
+
],
|
91 |
+
"properties": {
|
92 |
+
"Node name for S&R": "CogVideoTextEncode"
|
93 |
+
},
|
94 |
+
"widgets_values": [
|
95 |
+
"",
|
96 |
+
1,
|
97 |
+
true
|
98 |
+
]
|
99 |
+
},
|
100 |
+
{
|
101 |
+
"id": 11,
|
102 |
+
"type": "CogVideoDecode",
|
103 |
+
"pos": {
|
104 |
+
"0": 1416,
|
105 |
+
"1": 40
|
106 |
+
},
|
107 |
+
"size": {
|
108 |
+
"0": 300.396484375,
|
109 |
+
"1": 198
|
110 |
+
},
|
111 |
+
"flags": {},
|
112 |
+
"order": 6,
|
113 |
+
"mode": 0,
|
114 |
+
"inputs": [
|
115 |
+
{
|
116 |
+
"name": "vae",
|
117 |
+
"type": "VAE",
|
118 |
+
"link": 71
|
119 |
+
},
|
120 |
+
{
|
121 |
+
"name": "samples",
|
122 |
+
"type": "LATENT",
|
123 |
+
"link": 69
|
124 |
+
}
|
125 |
+
],
|
126 |
+
"outputs": [
|
127 |
+
{
|
128 |
+
"name": "images",
|
129 |
+
"type": "IMAGE",
|
130 |
+
"links": [
|
131 |
+
59
|
132 |
+
],
|
133 |
+
"slot_index": 0,
|
134 |
+
"shape": 3
|
135 |
+
}
|
136 |
+
],
|
137 |
+
"properties": {
|
138 |
+
"Node name for S&R": "CogVideoDecode"
|
139 |
+
},
|
140 |
+
"widgets_values": [
|
141 |
+
false,
|
142 |
+
240,
|
143 |
+
360,
|
144 |
+
0.2,
|
145 |
+
0.2,
|
146 |
+
true
|
147 |
+
]
|
148 |
+
},
|
149 |
+
{
|
150 |
+
"id": 36,
|
151 |
+
"type": "DownloadAndLoadCogVideoModel",
|
152 |
+
"pos": {
|
153 |
+
"0": 645,
|
154 |
+
"1": 17
|
155 |
+
},
|
156 |
+
"size": {
|
157 |
+
"0": 315,
|
158 |
+
"1": 218
|
159 |
+
},
|
160 |
+
"flags": {},
|
161 |
+
"order": 0,
|
162 |
+
"mode": 0,
|
163 |
+
"inputs": [
|
164 |
+
{
|
165 |
+
"name": "block_edit",
|
166 |
+
"type": "TRANSFORMERBLOCKS",
|
167 |
+
"link": null,
|
168 |
+
"shape": 7
|
169 |
+
},
|
170 |
+
{
|
171 |
+
"name": "lora",
|
172 |
+
"type": "COGLORA",
|
173 |
+
"link": null,
|
174 |
+
"shape": 7
|
175 |
+
},
|
176 |
+
{
|
177 |
+
"name": "compile_args",
|
178 |
+
"type": "COMPILEARGS",
|
179 |
+
"link": null,
|
180 |
+
"shape": 7
|
181 |
+
}
|
182 |
+
],
|
183 |
+
"outputs": [
|
184 |
+
{
|
185 |
+
"name": "model",
|
186 |
+
"type": "COGVIDEOMODEL",
|
187 |
+
"links": [
|
188 |
+
70
|
189 |
+
]
|
190 |
+
},
|
191 |
+
{
|
192 |
+
"name": "vae",
|
193 |
+
"type": "VAE",
|
194 |
+
"links": [
|
195 |
+
71
|
196 |
+
],
|
197 |
+
"slot_index": 1
|
198 |
+
}
|
199 |
+
],
|
200 |
+
"properties": {
|
201 |
+
"Node name for S&R": "DownloadAndLoadCogVideoModel"
|
202 |
+
},
|
203 |
+
"widgets_values": [
|
204 |
+
"THUDM/CogVideoX-5b",
|
205 |
+
"bf16",
|
206 |
+
"disabled",
|
207 |
+
false,
|
208 |
+
"sdpa",
|
209 |
+
"main_device"
|
210 |
+
]
|
211 |
+
},
|
212 |
+
{
|
213 |
+
"id": 20,
|
214 |
+
"type": "CLIPLoader",
|
215 |
+
"pos": {
|
216 |
+
"0": 5,
|
217 |
+
"1": 308
|
218 |
+
},
|
219 |
+
"size": {
|
220 |
+
"0": 451.30548095703125,
|
221 |
+
"1": 82
|
222 |
+
},
|
223 |
+
"flags": {},
|
224 |
+
"order": 1,
|
225 |
+
"mode": 0,
|
226 |
+
"inputs": [],
|
227 |
+
"outputs": [
|
228 |
+
{
|
229 |
+
"name": "CLIP",
|
230 |
+
"type": "CLIP",
|
231 |
+
"links": [
|
232 |
+
54
|
233 |
+
],
|
234 |
+
"slot_index": 0,
|
235 |
+
"shape": 3
|
236 |
+
}
|
237 |
+
],
|
238 |
+
"properties": {
|
239 |
+
"Node name for S&R": "CLIPLoader"
|
240 |
+
},
|
241 |
+
"widgets_values": [
|
242 |
+
"t5\\google_t5-v1_1-xxl_encoderonly-fp8_e4m3fn.safetensors",
|
243 |
+
"sd3"
|
244 |
+
]
|
245 |
+
},
|
246 |
+
{
|
247 |
+
"id": 37,
|
248 |
+
"type": "EmptyLatentImage",
|
249 |
+
"pos": {
|
250 |
+
"0": 643,
|
251 |
+
"1": 827
|
252 |
+
},
|
253 |
+
"size": {
|
254 |
+
"0": 315,
|
255 |
+
"1": 106
|
256 |
+
},
|
257 |
+
"flags": {},
|
258 |
+
"order": 2,
|
259 |
+
"mode": 0,
|
260 |
+
"inputs": [],
|
261 |
+
"outputs": [
|
262 |
+
{
|
263 |
+
"name": "LATENT",
|
264 |
+
"type": "LATENT",
|
265 |
+
"links": [
|
266 |
+
72
|
267 |
+
]
|
268 |
+
}
|
269 |
+
],
|
270 |
+
"properties": {
|
271 |
+
"Node name for S&R": "EmptyLatentImage"
|
272 |
+
},
|
273 |
+
"widgets_values": [
|
274 |
+
720,
|
275 |
+
480,
|
276 |
+
1
|
277 |
+
]
|
278 |
+
},
|
279 |
+
{
|
280 |
+
"id": 35,
|
281 |
+
"type": "CogVideoSampler",
|
282 |
+
"pos": {
|
283 |
+
"0": 1042,
|
284 |
+
"1": 291
|
285 |
+
},
|
286 |
+
"size": [
|
287 |
+
330,
|
288 |
+
574
|
289 |
+
],
|
290 |
+
"flags": {},
|
291 |
+
"order": 5,
|
292 |
+
"mode": 0,
|
293 |
+
"inputs": [
|
294 |
+
{
|
295 |
+
"name": "model",
|
296 |
+
"type": "COGVIDEOMODEL",
|
297 |
+
"link": 70
|
298 |
+
},
|
299 |
+
{
|
300 |
+
"name": "positive",
|
301 |
+
"type": "CONDITIONING",
|
302 |
+
"link": 67
|
303 |
+
},
|
304 |
+
{
|
305 |
+
"name": "negative",
|
306 |
+
"type": "CONDITIONING",
|
307 |
+
"link": 68
|
308 |
+
},
|
309 |
+
{
|
310 |
+
"name": "samples",
|
311 |
+
"type": "LATENT",
|
312 |
+
"link": 72,
|
313 |
+
"shape": 7
|
314 |
+
},
|
315 |
+
{
|
316 |
+
"name": "image_cond_latents",
|
317 |
+
"type": "LATENT",
|
318 |
+
"link": null,
|
319 |
+
"shape": 7
|
320 |
+
},
|
321 |
+
{
|
322 |
+
"name": "context_options",
|
323 |
+
"type": "COGCONTEXT",
|
324 |
+
"link": null,
|
325 |
+
"shape": 7
|
326 |
+
},
|
327 |
+
{
|
328 |
+
"name": "controlnet",
|
329 |
+
"type": "COGVIDECONTROLNET",
|
330 |
+
"link": null,
|
331 |
+
"shape": 7
|
332 |
+
},
|
333 |
+
{
|
334 |
+
"name": "tora_trajectory",
|
335 |
+
"type": "TORAFEATURES",
|
336 |
+
"link": null,
|
337 |
+
"shape": 7
|
338 |
+
},
|
339 |
+
{
|
340 |
+
"name": "fastercache",
|
341 |
+
"type": "FASTERCACHEARGS",
|
342 |
+
"link": null,
|
343 |
+
"shape": 7
|
344 |
+
}
|
345 |
+
],
|
346 |
+
"outputs": [
|
347 |
+
{
|
348 |
+
"name": "samples",
|
349 |
+
"type": "LATENT",
|
350 |
+
"links": [
|
351 |
+
69
|
352 |
+
]
|
353 |
+
}
|
354 |
+
],
|
355 |
+
"properties": {
|
356 |
+
"Node name for S&R": "CogVideoSampler"
|
357 |
+
},
|
358 |
+
"widgets_values": [
|
359 |
+
49,
|
360 |
+
50,
|
361 |
+
6,
|
362 |
+
0,
|
363 |
+
"fixed",
|
364 |
+
"CogVideoXDDIM",
|
365 |
+
1
|
366 |
+
]
|
367 |
+
},
|
368 |
+
{
|
369 |
+
"id": 33,
|
370 |
+
"type": "VHS_VideoCombine",
|
371 |
+
"pos": {
|
372 |
+
"0": 1767,
|
373 |
+
"1": 39
|
374 |
+
},
|
375 |
+
"size": [
|
376 |
+
778.7022705078125,
|
377 |
+
829.801513671875
|
378 |
+
],
|
379 |
+
"flags": {},
|
380 |
+
"order": 7,
|
381 |
+
"mode": 0,
|
382 |
+
"inputs": [
|
383 |
+
{
|
384 |
+
"name": "images",
|
385 |
+
"type": "IMAGE",
|
386 |
+
"link": 59
|
387 |
+
},
|
388 |
+
{
|
389 |
+
"name": "audio",
|
390 |
+
"type": "AUDIO",
|
391 |
+
"link": null,
|
392 |
+
"shape": 7
|
393 |
+
},
|
394 |
+
{
|
395 |
+
"name": "meta_batch",
|
396 |
+
"type": "VHS_BatchManager",
|
397 |
+
"link": null,
|
398 |
+
"shape": 7
|
399 |
+
},
|
400 |
+
{
|
401 |
+
"name": "vae",
|
402 |
+
"type": "VAE",
|
403 |
+
"link": null,
|
404 |
+
"shape": 7
|
405 |
+
}
|
406 |
+
],
|
407 |
+
"outputs": [
|
408 |
+
{
|
409 |
+
"name": "Filenames",
|
410 |
+
"type": "VHS_FILENAMES",
|
411 |
+
"links": null,
|
412 |
+
"shape": 3
|
413 |
+
}
|
414 |
+
],
|
415 |
+
"properties": {
|
416 |
+
"Node name for S&R": "VHS_VideoCombine"
|
417 |
+
},
|
418 |
+
"widgets_values": {
|
419 |
+
"frame_rate": 8,
|
420 |
+
"loop_count": 0,
|
421 |
+
"filename_prefix": "CogVideoX5B-T2V",
|
422 |
+
"format": "video/h264-mp4",
|
423 |
+
"pix_fmt": "yuv420p",
|
424 |
+
"crf": 19,
|
425 |
+
"save_metadata": true,
|
426 |
+
"pingpong": false,
|
427 |
+
"save_output": false,
|
428 |
+
"videopreview": {
|
429 |
+
"hidden": false,
|
430 |
+
"paused": false,
|
431 |
+
"params": {
|
432 |
+
"filename": "CogVideoX5B_00001.mp4",
|
433 |
+
"subfolder": "",
|
434 |
+
"type": "temp",
|
435 |
+
"format": "video/h264-mp4",
|
436 |
+
"frame_rate": 8
|
437 |
+
},
|
438 |
+
"muted": false
|
439 |
+
}
|
440 |
+
}
|
441 |
+
}
|
442 |
+
],
|
443 |
+
"links": [
|
444 |
+
[
|
445 |
+
54,
|
446 |
+
20,
|
447 |
+
0,
|
448 |
+
30,
|
449 |
+
0,
|
450 |
+
"CLIP"
|
451 |
+
],
|
452 |
+
[
|
453 |
+
59,
|
454 |
+
11,
|
455 |
+
0,
|
456 |
+
33,
|
457 |
+
0,
|
458 |
+
"IMAGE"
|
459 |
+
],
|
460 |
+
[
|
461 |
+
65,
|
462 |
+
30,
|
463 |
+
1,
|
464 |
+
31,
|
465 |
+
0,
|
466 |
+
"CLIP"
|
467 |
+
],
|
468 |
+
[
|
469 |
+
67,
|
470 |
+
30,
|
471 |
+
0,
|
472 |
+
35,
|
473 |
+
1,
|
474 |
+
"CONDITIONING"
|
475 |
+
],
|
476 |
+
[
|
477 |
+
68,
|
478 |
+
31,
|
479 |
+
0,
|
480 |
+
35,
|
481 |
+
2,
|
482 |
+
"CONDITIONING"
|
483 |
+
],
|
484 |
+
[
|
485 |
+
69,
|
486 |
+
35,
|
487 |
+
0,
|
488 |
+
11,
|
489 |
+
1,
|
490 |
+
"LATENT"
|
491 |
+
],
|
492 |
+
[
|
493 |
+
70,
|
494 |
+
36,
|
495 |
+
0,
|
496 |
+
35,
|
497 |
+
0,
|
498 |
+
"COGVIDEOMODEL"
|
499 |
+
],
|
500 |
+
[
|
501 |
+
71,
|
502 |
+
36,
|
503 |
+
1,
|
504 |
+
11,
|
505 |
+
0,
|
506 |
+
"VAE"
|
507 |
+
],
|
508 |
+
[
|
509 |
+
72,
|
510 |
+
37,
|
511 |
+
0,
|
512 |
+
35,
|
513 |
+
3,
|
514 |
+
"LATENT"
|
515 |
+
]
|
516 |
+
],
|
517 |
+
"groups": [],
|
518 |
+
"config": {},
|
519 |
+
"extra": {
|
520 |
+
"ds": {
|
521 |
+
"scale": 0.7627768444387061,
|
522 |
+
"offset": [
|
523 |
+
734.1791945221892,
|
524 |
+
237.29437844909364
|
525 |
+
]
|
526 |
+
}
|
527 |
+
},
|
528 |
+
"version": 0.4
|
529 |
+
}
|
custom_nodes/ComfyUI-CogVideoXWrapper/example_workflows/cogvideox_1_0_5b_interpolation_02.json
ADDED
@@ -0,0 +1,864 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"last_node_id": 68,
|
3 |
+
"last_link_id": 155,
|
4 |
+
"nodes": [
|
5 |
+
{
|
6 |
+
"id": 31,
|
7 |
+
"type": "CogVideoTextEncode",
|
8 |
+
"pos": {
|
9 |
+
"0": 497,
|
10 |
+
"1": 520
|
11 |
+
},
|
12 |
+
"size": {
|
13 |
+
"0": 463.01251220703125,
|
14 |
+
"1": 144
|
15 |
+
},
|
16 |
+
"flags": {},
|
17 |
+
"order": 6,
|
18 |
+
"mode": 0,
|
19 |
+
"inputs": [
|
20 |
+
{
|
21 |
+
"name": "clip",
|
22 |
+
"type": "CLIP",
|
23 |
+
"link": 149
|
24 |
+
}
|
25 |
+
],
|
26 |
+
"outputs": [
|
27 |
+
{
|
28 |
+
"name": "conditioning",
|
29 |
+
"type": "CONDITIONING",
|
30 |
+
"links": [
|
31 |
+
146
|
32 |
+
],
|
33 |
+
"slot_index": 0,
|
34 |
+
"shape": 3
|
35 |
+
},
|
36 |
+
{
|
37 |
+
"name": "clip",
|
38 |
+
"type": "CLIP",
|
39 |
+
"links": null
|
40 |
+
}
|
41 |
+
],
|
42 |
+
"properties": {
|
43 |
+
"Node name for S&R": "CogVideoTextEncode"
|
44 |
+
},
|
45 |
+
"widgets_values": [
|
46 |
+
"The video is not of a high quality, it has a low resolution. Watermark present in each frame. Strange motion trajectory. ",
|
47 |
+
1,
|
48 |
+
true
|
49 |
+
]
|
50 |
+
},
|
51 |
+
{
|
52 |
+
"id": 63,
|
53 |
+
"type": "CogVideoSampler",
|
54 |
+
"pos": {
|
55 |
+
"0": 1142,
|
56 |
+
"1": 74
|
57 |
+
},
|
58 |
+
"size": [
|
59 |
+
330,
|
60 |
+
574
|
61 |
+
],
|
62 |
+
"flags": {},
|
63 |
+
"order": 9,
|
64 |
+
"mode": 0,
|
65 |
+
"inputs": [
|
66 |
+
{
|
67 |
+
"name": "model",
|
68 |
+
"type": "COGVIDEOMODEL",
|
69 |
+
"link": 144
|
70 |
+
},
|
71 |
+
{
|
72 |
+
"name": "positive",
|
73 |
+
"type": "CONDITIONING",
|
74 |
+
"link": 145
|
75 |
+
},
|
76 |
+
{
|
77 |
+
"name": "negative",
|
78 |
+
"type": "CONDITIONING",
|
79 |
+
"link": 146
|
80 |
+
},
|
81 |
+
{
|
82 |
+
"name": "samples",
|
83 |
+
"type": "LATENT",
|
84 |
+
"link": null,
|
85 |
+
"shape": 7
|
86 |
+
},
|
87 |
+
{
|
88 |
+
"name": "image_cond_latents",
|
89 |
+
"type": "LATENT",
|
90 |
+
"link": 147,
|
91 |
+
"shape": 7
|
92 |
+
},
|
93 |
+
{
|
94 |
+
"name": "context_options",
|
95 |
+
"type": "COGCONTEXT",
|
96 |
+
"link": null,
|
97 |
+
"shape": 7
|
98 |
+
},
|
99 |
+
{
|
100 |
+
"name": "controlnet",
|
101 |
+
"type": "COGVIDECONTROLNET",
|
102 |
+
"link": null,
|
103 |
+
"shape": 7
|
104 |
+
},
|
105 |
+
{
|
106 |
+
"name": "tora_trajectory",
|
107 |
+
"type": "TORAFEATURES",
|
108 |
+
"link": null,
|
109 |
+
"shape": 7
|
110 |
+
},
|
111 |
+
{
|
112 |
+
"name": "fastercache",
|
113 |
+
"type": "FASTERCACHEARGS",
|
114 |
+
"link": null,
|
115 |
+
"shape": 7
|
116 |
+
}
|
117 |
+
],
|
118 |
+
"outputs": [
|
119 |
+
{
|
120 |
+
"name": "samples",
|
121 |
+
"type": "LATENT",
|
122 |
+
"links": [
|
123 |
+
148
|
124 |
+
]
|
125 |
+
}
|
126 |
+
],
|
127 |
+
"properties": {
|
128 |
+
"Node name for S&R": "CogVideoSampler"
|
129 |
+
},
|
130 |
+
"widgets_values": [
|
131 |
+
49,
|
132 |
+
25,
|
133 |
+
6,
|
134 |
+
0,
|
135 |
+
"fixed",
|
136 |
+
"CogVideoXDDIM",
|
137 |
+
1
|
138 |
+
]
|
139 |
+
},
|
140 |
+
{
|
141 |
+
"id": 30,
|
142 |
+
"type": "CogVideoTextEncode",
|
143 |
+
"pos": {
|
144 |
+
"0": 493,
|
145 |
+
"1": 303
|
146 |
+
},
|
147 |
+
"size": {
|
148 |
+
"0": 471.90142822265625,
|
149 |
+
"1": 168.08047485351562
|
150 |
+
},
|
151 |
+
"flags": {},
|
152 |
+
"order": 4,
|
153 |
+
"mode": 0,
|
154 |
+
"inputs": [
|
155 |
+
{
|
156 |
+
"name": "clip",
|
157 |
+
"type": "CLIP",
|
158 |
+
"link": 54
|
159 |
+
}
|
160 |
+
],
|
161 |
+
"outputs": [
|
162 |
+
{
|
163 |
+
"name": "conditioning",
|
164 |
+
"type": "CONDITIONING",
|
165 |
+
"links": [
|
166 |
+
145
|
167 |
+
],
|
168 |
+
"slot_index": 0,
|
169 |
+
"shape": 3
|
170 |
+
},
|
171 |
+
{
|
172 |
+
"name": "clip",
|
173 |
+
"type": "CLIP",
|
174 |
+
"links": [
|
175 |
+
149
|
176 |
+
],
|
177 |
+
"slot_index": 1
|
178 |
+
}
|
179 |
+
],
|
180 |
+
"properties": {
|
181 |
+
"Node name for S&R": "CogVideoTextEncode"
|
182 |
+
},
|
183 |
+
"widgets_values": [
|
184 |
+
"a majestic stag is grazing in an enhanced forest, basking in the setting sun filtered by the trees",
|
185 |
+
1,
|
186 |
+
false
|
187 |
+
]
|
188 |
+
},
|
189 |
+
{
|
190 |
+
"id": 20,
|
191 |
+
"type": "CLIPLoader",
|
192 |
+
"pos": {
|
193 |
+
"0": -2,
|
194 |
+
"1": 304
|
195 |
+
},
|
196 |
+
"size": {
|
197 |
+
"0": 451.30548095703125,
|
198 |
+
"1": 82
|
199 |
+
},
|
200 |
+
"flags": {},
|
201 |
+
"order": 0,
|
202 |
+
"mode": 0,
|
203 |
+
"inputs": [],
|
204 |
+
"outputs": [
|
205 |
+
{
|
206 |
+
"name": "CLIP",
|
207 |
+
"type": "CLIP",
|
208 |
+
"links": [
|
209 |
+
54
|
210 |
+
],
|
211 |
+
"slot_index": 0,
|
212 |
+
"shape": 3
|
213 |
+
}
|
214 |
+
],
|
215 |
+
"properties": {
|
216 |
+
"Node name for S&R": "CLIPLoader"
|
217 |
+
},
|
218 |
+
"widgets_values": [
|
219 |
+
"t5\\google_t5-v1_1-xxl_encoderonly-fp8_e4m3fn.safetensors",
|
220 |
+
"sd3"
|
221 |
+
]
|
222 |
+
},
|
223 |
+
{
|
224 |
+
"id": 36,
|
225 |
+
"type": "LoadImage",
|
226 |
+
"pos": {
|
227 |
+
"0": 105,
|
228 |
+
"1": 732
|
229 |
+
},
|
230 |
+
"size": {
|
231 |
+
"0": 402.06353759765625,
|
232 |
+
"1": 396.6225891113281
|
233 |
+
},
|
234 |
+
"flags": {},
|
235 |
+
"order": 1,
|
236 |
+
"mode": 0,
|
237 |
+
"inputs": [],
|
238 |
+
"outputs": [
|
239 |
+
{
|
240 |
+
"name": "IMAGE",
|
241 |
+
"type": "IMAGE",
|
242 |
+
"links": [
|
243 |
+
71
|
244 |
+
],
|
245 |
+
"slot_index": 0,
|
246 |
+
"shape": 3
|
247 |
+
},
|
248 |
+
{
|
249 |
+
"name": "MASK",
|
250 |
+
"type": "MASK",
|
251 |
+
"links": null,
|
252 |
+
"shape": 3
|
253 |
+
}
|
254 |
+
],
|
255 |
+
"properties": {
|
256 |
+
"Node name for S&R": "LoadImage"
|
257 |
+
},
|
258 |
+
"widgets_values": [
|
259 |
+
"sd3stag.png",
|
260 |
+
"image"
|
261 |
+
]
|
262 |
+
},
|
263 |
+
{
|
264 |
+
"id": 64,
|
265 |
+
"type": "LoadImage",
|
266 |
+
"pos": {
|
267 |
+
"0": 105,
|
268 |
+
"1": 1189
|
269 |
+
},
|
270 |
+
"size": {
|
271 |
+
"0": 402.06353759765625,
|
272 |
+
"1": 396.6225891113281
|
273 |
+
},
|
274 |
+
"flags": {},
|
275 |
+
"order": 2,
|
276 |
+
"mode": 0,
|
277 |
+
"inputs": [],
|
278 |
+
"outputs": [
|
279 |
+
{
|
280 |
+
"name": "IMAGE",
|
281 |
+
"type": "IMAGE",
|
282 |
+
"links": [
|
283 |
+
151
|
284 |
+
],
|
285 |
+
"slot_index": 0,
|
286 |
+
"shape": 3
|
287 |
+
},
|
288 |
+
{
|
289 |
+
"name": "MASK",
|
290 |
+
"type": "MASK",
|
291 |
+
"links": null,
|
292 |
+
"shape": 3
|
293 |
+
}
|
294 |
+
],
|
295 |
+
"properties": {
|
296 |
+
"Node name for S&R": "LoadImage"
|
297 |
+
},
|
298 |
+
"widgets_values": [
|
299 |
+
"sd3stag.png",
|
300 |
+
"image"
|
301 |
+
]
|
302 |
+
},
|
303 |
+
{
|
304 |
+
"id": 65,
|
305 |
+
"type": "ImageResizeKJ",
|
306 |
+
"pos": {
|
307 |
+
"0": 607,
|
308 |
+
"1": 1188
|
309 |
+
},
|
310 |
+
"size": [
|
311 |
+
315,
|
312 |
+
266
|
313 |
+
],
|
314 |
+
"flags": {},
|
315 |
+
"order": 7,
|
316 |
+
"mode": 0,
|
317 |
+
"inputs": [
|
318 |
+
{
|
319 |
+
"name": "image",
|
320 |
+
"type": "IMAGE",
|
321 |
+
"link": 151
|
322 |
+
},
|
323 |
+
{
|
324 |
+
"name": "get_image_size",
|
325 |
+
"type": "IMAGE",
|
326 |
+
"link": null,
|
327 |
+
"shape": 7
|
328 |
+
},
|
329 |
+
{
|
330 |
+
"name": "width_input",
|
331 |
+
"type": "INT",
|
332 |
+
"link": null,
|
333 |
+
"widget": {
|
334 |
+
"name": "width_input"
|
335 |
+
},
|
336 |
+
"shape": 7
|
337 |
+
},
|
338 |
+
{
|
339 |
+
"name": "height_input",
|
340 |
+
"type": "INT",
|
341 |
+
"link": null,
|
342 |
+
"widget": {
|
343 |
+
"name": "height_input"
|
344 |
+
},
|
345 |
+
"shape": 7
|
346 |
+
},
|
347 |
+
{
|
348 |
+
"name": "width",
|
349 |
+
"type": "INT",
|
350 |
+
"link": 152,
|
351 |
+
"widget": {
|
352 |
+
"name": "width"
|
353 |
+
}
|
354 |
+
},
|
355 |
+
{
|
356 |
+
"name": "height",
|
357 |
+
"type": "INT",
|
358 |
+
"link": 153,
|
359 |
+
"widget": {
|
360 |
+
"name": "height"
|
361 |
+
}
|
362 |
+
}
|
363 |
+
],
|
364 |
+
"outputs": [
|
365 |
+
{
|
366 |
+
"name": "IMAGE",
|
367 |
+
"type": "IMAGE",
|
368 |
+
"links": [
|
369 |
+
155
|
370 |
+
],
|
371 |
+
"slot_index": 0,
|
372 |
+
"shape": 3
|
373 |
+
},
|
374 |
+
{
|
375 |
+
"name": "width",
|
376 |
+
"type": "INT",
|
377 |
+
"links": null,
|
378 |
+
"shape": 3
|
379 |
+
},
|
380 |
+
{
|
381 |
+
"name": "height",
|
382 |
+
"type": "INT",
|
383 |
+
"links": null,
|
384 |
+
"shape": 3
|
385 |
+
}
|
386 |
+
],
|
387 |
+
"properties": {
|
388 |
+
"Node name for S&R": "ImageResizeKJ"
|
389 |
+
},
|
390 |
+
"widgets_values": [
|
391 |
+
720,
|
392 |
+
480,
|
393 |
+
"lanczos",
|
394 |
+
false,
|
395 |
+
16,
|
396 |
+
0,
|
397 |
+
0,
|
398 |
+
"disabled"
|
399 |
+
]
|
400 |
+
},
|
401 |
+
{
|
402 |
+
"id": 37,
|
403 |
+
"type": "ImageResizeKJ",
|
404 |
+
"pos": {
|
405 |
+
"0": 593,
|
406 |
+
"1": 731
|
407 |
+
},
|
408 |
+
"size": {
|
409 |
+
"0": 315,
|
410 |
+
"1": 266
|
411 |
+
},
|
412 |
+
"flags": {},
|
413 |
+
"order": 5,
|
414 |
+
"mode": 0,
|
415 |
+
"inputs": [
|
416 |
+
{
|
417 |
+
"name": "image",
|
418 |
+
"type": "IMAGE",
|
419 |
+
"link": 71
|
420 |
+
},
|
421 |
+
{
|
422 |
+
"name": "get_image_size",
|
423 |
+
"type": "IMAGE",
|
424 |
+
"link": null,
|
425 |
+
"shape": 7
|
426 |
+
},
|
427 |
+
{
|
428 |
+
"name": "width_input",
|
429 |
+
"type": "INT",
|
430 |
+
"link": null,
|
431 |
+
"widget": {
|
432 |
+
"name": "width_input"
|
433 |
+
}
|
434 |
+
},
|
435 |
+
{
|
436 |
+
"name": "height_input",
|
437 |
+
"type": "INT",
|
438 |
+
"link": null,
|
439 |
+
"widget": {
|
440 |
+
"name": "height_input"
|
441 |
+
}
|
442 |
+
}
|
443 |
+
],
|
444 |
+
"outputs": [
|
445 |
+
{
|
446 |
+
"name": "IMAGE",
|
447 |
+
"type": "IMAGE",
|
448 |
+
"links": [
|
449 |
+
142
|
450 |
+
],
|
451 |
+
"slot_index": 0,
|
452 |
+
"shape": 3
|
453 |
+
},
|
454 |
+
{
|
455 |
+
"name": "width",
|
456 |
+
"type": "INT",
|
457 |
+
"links": [
|
458 |
+
152
|
459 |
+
],
|
460 |
+
"shape": 3,
|
461 |
+
"slot_index": 1
|
462 |
+
},
|
463 |
+
{
|
464 |
+
"name": "height",
|
465 |
+
"type": "INT",
|
466 |
+
"links": [
|
467 |
+
153
|
468 |
+
],
|
469 |
+
"shape": 3,
|
470 |
+
"slot_index": 2
|
471 |
+
}
|
472 |
+
],
|
473 |
+
"properties": {
|
474 |
+
"Node name for S&R": "ImageResizeKJ"
|
475 |
+
},
|
476 |
+
"widgets_values": [
|
477 |
+
720,
|
478 |
+
480,
|
479 |
+
"lanczos",
|
480 |
+
false,
|
481 |
+
16,
|
482 |
+
0,
|
483 |
+
0,
|
484 |
+
"disabled"
|
485 |
+
]
|
486 |
+
},
|
487 |
+
{
|
488 |
+
"id": 60,
|
489 |
+
"type": "CogVideoDecode",
|
490 |
+
"pos": {
|
491 |
+
"0": 1526,
|
492 |
+
"1": -4
|
493 |
+
},
|
494 |
+
"size": {
|
495 |
+
"0": 315,
|
496 |
+
"1": 198
|
497 |
+
},
|
498 |
+
"flags": {},
|
499 |
+
"order": 10,
|
500 |
+
"mode": 0,
|
501 |
+
"inputs": [
|
502 |
+
{
|
503 |
+
"name": "vae",
|
504 |
+
"type": "VAE",
|
505 |
+
"link": 132
|
506 |
+
},
|
507 |
+
{
|
508 |
+
"name": "samples",
|
509 |
+
"type": "LATENT",
|
510 |
+
"link": 148
|
511 |
+
}
|
512 |
+
],
|
513 |
+
"outputs": [
|
514 |
+
{
|
515 |
+
"name": "images",
|
516 |
+
"type": "IMAGE",
|
517 |
+
"links": [
|
518 |
+
134
|
519 |
+
]
|
520 |
+
}
|
521 |
+
],
|
522 |
+
"properties": {
|
523 |
+
"Node name for S&R": "CogVideoDecode"
|
524 |
+
},
|
525 |
+
"widgets_values": [
|
526 |
+
true,
|
527 |
+
240,
|
528 |
+
360,
|
529 |
+
0.2,
|
530 |
+
0.2,
|
531 |
+
true
|
532 |
+
]
|
533 |
+
},
|
534 |
+
{
|
535 |
+
"id": 62,
|
536 |
+
"type": "CogVideoImageEncode",
|
537 |
+
"pos": {
|
538 |
+
"0": 1152,
|
539 |
+
"1": 706
|
540 |
+
},
|
541 |
+
"size": {
|
542 |
+
"0": 315,
|
543 |
+
"1": 122
|
544 |
+
},
|
545 |
+
"flags": {},
|
546 |
+
"order": 8,
|
547 |
+
"mode": 0,
|
548 |
+
"inputs": [
|
549 |
+
{
|
550 |
+
"name": "vae",
|
551 |
+
"type": "VAE",
|
552 |
+
"link": 141
|
553 |
+
},
|
554 |
+
{
|
555 |
+
"name": "start_image",
|
556 |
+
"type": "IMAGE",
|
557 |
+
"link": 142
|
558 |
+
},
|
559 |
+
{
|
560 |
+
"name": "end_image",
|
561 |
+
"type": "IMAGE",
|
562 |
+
"link": 155,
|
563 |
+
"shape": 7
|
564 |
+
}
|
565 |
+
],
|
566 |
+
"outputs": [
|
567 |
+
{
|
568 |
+
"name": "samples",
|
569 |
+
"type": "LATENT",
|
570 |
+
"links": [
|
571 |
+
147
|
572 |
+
]
|
573 |
+
}
|
574 |
+
],
|
575 |
+
"properties": {
|
576 |
+
"Node name for S&R": "CogVideoImageEncode"
|
577 |
+
},
|
578 |
+
"widgets_values": [
|
579 |
+
false,
|
580 |
+
0
|
581 |
+
]
|
582 |
+
},
|
583 |
+
{
|
584 |
+
"id": 44,
|
585 |
+
"type": "VHS_VideoCombine",
|
586 |
+
"pos": {
|
587 |
+
"0": 1884,
|
588 |
+
"1": -3
|
589 |
+
},
|
590 |
+
"size": [
|
591 |
+
605.3909912109375,
|
592 |
+
714.2606608072917
|
593 |
+
],
|
594 |
+
"flags": {},
|
595 |
+
"order": 11,
|
596 |
+
"mode": 0,
|
597 |
+
"inputs": [
|
598 |
+
{
|
599 |
+
"name": "images",
|
600 |
+
"type": "IMAGE",
|
601 |
+
"link": 134
|
602 |
+
},
|
603 |
+
{
|
604 |
+
"name": "audio",
|
605 |
+
"type": "AUDIO",
|
606 |
+
"link": null,
|
607 |
+
"shape": 7
|
608 |
+
},
|
609 |
+
{
|
610 |
+
"name": "meta_batch",
|
611 |
+
"type": "VHS_BatchManager",
|
612 |
+
"link": null,
|
613 |
+
"shape": 7
|
614 |
+
},
|
615 |
+
{
|
616 |
+
"name": "vae",
|
617 |
+
"type": "VAE",
|
618 |
+
"link": null,
|
619 |
+
"shape": 7
|
620 |
+
}
|
621 |
+
],
|
622 |
+
"outputs": [
|
623 |
+
{
|
624 |
+
"name": "Filenames",
|
625 |
+
"type": "VHS_FILENAMES",
|
626 |
+
"links": null,
|
627 |
+
"shape": 3
|
628 |
+
}
|
629 |
+
],
|
630 |
+
"properties": {
|
631 |
+
"Node name for S&R": "VHS_VideoCombine"
|
632 |
+
},
|
633 |
+
"widgets_values": {
|
634 |
+
"frame_rate": 8,
|
635 |
+
"loop_count": 0,
|
636 |
+
"filename_prefix": "CogVideoX-Interpolation",
|
637 |
+
"format": "video/h264-mp4",
|
638 |
+
"pix_fmt": "yuv420p",
|
639 |
+
"crf": 19,
|
640 |
+
"save_metadata": true,
|
641 |
+
"pingpong": false,
|
642 |
+
"save_output": true,
|
643 |
+
"videopreview": {
|
644 |
+
"hidden": false,
|
645 |
+
"paused": false,
|
646 |
+
"params": {
|
647 |
+
"filename": "CogVideoX-I2V_00003.mp4",
|
648 |
+
"subfolder": "",
|
649 |
+
"type": "temp",
|
650 |
+
"format": "video/h264-mp4",
|
651 |
+
"frame_rate": 8
|
652 |
+
},
|
653 |
+
"muted": false
|
654 |
+
}
|
655 |
+
}
|
656 |
+
},
|
657 |
+
{
|
658 |
+
"id": 59,
|
659 |
+
"type": "DownloadAndLoadCogVideoModel",
|
660 |
+
"pos": {
|
661 |
+
"0": 622,
|
662 |
+
"1": -25
|
663 |
+
},
|
664 |
+
"size": [
|
665 |
+
347.24594407027485,
|
666 |
+
218
|
667 |
+
],
|
668 |
+
"flags": {},
|
669 |
+
"order": 3,
|
670 |
+
"mode": 0,
|
671 |
+
"inputs": [
|
672 |
+
{
|
673 |
+
"name": "block_edit",
|
674 |
+
"type": "TRANSFORMERBLOCKS",
|
675 |
+
"link": null,
|
676 |
+
"shape": 7
|
677 |
+
},
|
678 |
+
{
|
679 |
+
"name": "lora",
|
680 |
+
"type": "COGLORA",
|
681 |
+
"link": null,
|
682 |
+
"shape": 7
|
683 |
+
},
|
684 |
+
{
|
685 |
+
"name": "compile_args",
|
686 |
+
"type": "COMPILEARGS",
|
687 |
+
"link": null,
|
688 |
+
"shape": 7
|
689 |
+
}
|
690 |
+
],
|
691 |
+
"outputs": [
|
692 |
+
{
|
693 |
+
"name": "model",
|
694 |
+
"type": "COGVIDEOMODEL",
|
695 |
+
"links": [
|
696 |
+
144
|
697 |
+
]
|
698 |
+
},
|
699 |
+
{
|
700 |
+
"name": "vae",
|
701 |
+
"type": "VAE",
|
702 |
+
"links": [
|
703 |
+
132,
|
704 |
+
141
|
705 |
+
],
|
706 |
+
"slot_index": 1
|
707 |
+
}
|
708 |
+
],
|
709 |
+
"properties": {
|
710 |
+
"Node name for S&R": "DownloadAndLoadCogVideoModel"
|
711 |
+
},
|
712 |
+
"widgets_values": [
|
713 |
+
"feizhengcong/CogvideoX-Interpolation",
|
714 |
+
"bf16",
|
715 |
+
"disabled",
|
716 |
+
false,
|
717 |
+
"sdpa",
|
718 |
+
"main_device"
|
719 |
+
]
|
720 |
+
}
|
721 |
+
],
|
722 |
+
"links": [
|
723 |
+
[
|
724 |
+
54,
|
725 |
+
20,
|
726 |
+
0,
|
727 |
+
30,
|
728 |
+
0,
|
729 |
+
"CLIP"
|
730 |
+
],
|
731 |
+
[
|
732 |
+
71,
|
733 |
+
36,
|
734 |
+
0,
|
735 |
+
37,
|
736 |
+
0,
|
737 |
+
"IMAGE"
|
738 |
+
],
|
739 |
+
[
|
740 |
+
132,
|
741 |
+
59,
|
742 |
+
1,
|
743 |
+
60,
|
744 |
+
0,
|
745 |
+
"VAE"
|
746 |
+
],
|
747 |
+
[
|
748 |
+
134,
|
749 |
+
60,
|
750 |
+
0,
|
751 |
+
44,
|
752 |
+
0,
|
753 |
+
"IMAGE"
|
754 |
+
],
|
755 |
+
[
|
756 |
+
141,
|
757 |
+
59,
|
758 |
+
1,
|
759 |
+
62,
|
760 |
+
0,
|
761 |
+
"VAE"
|
762 |
+
],
|
763 |
+
[
|
764 |
+
142,
|
765 |
+
37,
|
766 |
+
0,
|
767 |
+
62,
|
768 |
+
1,
|
769 |
+
"IMAGE"
|
770 |
+
],
|
771 |
+
[
|
772 |
+
144,
|
773 |
+
59,
|
774 |
+
0,
|
775 |
+
63,
|
776 |
+
0,
|
777 |
+
"COGVIDEOMODEL"
|
778 |
+
],
|
779 |
+
[
|
780 |
+
145,
|
781 |
+
30,
|
782 |
+
0,
|
783 |
+
63,
|
784 |
+
1,
|
785 |
+
"CONDITIONING"
|
786 |
+
],
|
787 |
+
[
|
788 |
+
146,
|
789 |
+
31,
|
790 |
+
0,
|
791 |
+
63,
|
792 |
+
2,
|
793 |
+
"CONDITIONING"
|
794 |
+
],
|
795 |
+
[
|
796 |
+
147,
|
797 |
+
62,
|
798 |
+
0,
|
799 |
+
63,
|
800 |
+
4,
|
801 |
+
"LATENT"
|
802 |
+
],
|
803 |
+
[
|
804 |
+
148,
|
805 |
+
63,
|
806 |
+
0,
|
807 |
+
60,
|
808 |
+
1,
|
809 |
+
"LATENT"
|
810 |
+
],
|
811 |
+
[
|
812 |
+
149,
|
813 |
+
30,
|
814 |
+
1,
|
815 |
+
31,
|
816 |
+
0,
|
817 |
+
"CLIP"
|
818 |
+
],
|
819 |
+
[
|
820 |
+
151,
|
821 |
+
64,
|
822 |
+
0,
|
823 |
+
65,
|
824 |
+
0,
|
825 |
+
"IMAGE"
|
826 |
+
],
|
827 |
+
[
|
828 |
+
152,
|
829 |
+
37,
|
830 |
+
1,
|
831 |
+
65,
|
832 |
+
4,
|
833 |
+
"INT"
|
834 |
+
],
|
835 |
+
[
|
836 |
+
153,
|
837 |
+
37,
|
838 |
+
2,
|
839 |
+
65,
|
840 |
+
5,
|
841 |
+
"INT"
|
842 |
+
],
|
843 |
+
[
|
844 |
+
155,
|
845 |
+
65,
|
846 |
+
0,
|
847 |
+
62,
|
848 |
+
2,
|
849 |
+
"IMAGE"
|
850 |
+
]
|
851 |
+
],
|
852 |
+
"groups": [],
|
853 |
+
"config": {},
|
854 |
+
"extra": {
|
855 |
+
"ds": {
|
856 |
+
"scale": 0.7627768444387061,
|
857 |
+
"offset": [
|
858 |
+
630.1733472923837,
|
859 |
+
148.14641794691272
|
860 |
+
]
|
861 |
+
}
|
862 |
+
},
|
863 |
+
"version": 0.4
|
864 |
+
}
|
custom_nodes/ComfyUI-CogVideoXWrapper/example_workflows/cogvideox_1_0_5b_vid2vid_02.json
ADDED
@@ -0,0 +1,1061 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"last_node_id": 78,
|
3 |
+
"last_link_id": 218,
|
4 |
+
"nodes": [
|
5 |
+
{
|
6 |
+
"id": 20,
|
7 |
+
"type": "CLIPLoader",
|
8 |
+
"pos": {
|
9 |
+
"0": -29,
|
10 |
+
"1": 407
|
11 |
+
},
|
12 |
+
"size": {
|
13 |
+
"0": 451.30548095703125,
|
14 |
+
"1": 82
|
15 |
+
},
|
16 |
+
"flags": {},
|
17 |
+
"order": 0,
|
18 |
+
"mode": 0,
|
19 |
+
"inputs": [],
|
20 |
+
"outputs": [
|
21 |
+
{
|
22 |
+
"name": "CLIP",
|
23 |
+
"type": "CLIP",
|
24 |
+
"links": [
|
25 |
+
54
|
26 |
+
],
|
27 |
+
"slot_index": 0,
|
28 |
+
"shape": 3
|
29 |
+
}
|
30 |
+
],
|
31 |
+
"properties": {
|
32 |
+
"Node name for S&R": "CLIPLoader"
|
33 |
+
},
|
34 |
+
"widgets_values": [
|
35 |
+
"t5\\google_t5-v1_1-xxl_encoderonly-fp8_e4m3fn.safetensors",
|
36 |
+
"sd3"
|
37 |
+
]
|
38 |
+
},
|
39 |
+
{
|
40 |
+
"id": 41,
|
41 |
+
"type": "ImageResizeKJ",
|
42 |
+
"pos": {
|
43 |
+
"0": 206,
|
44 |
+
"1": -69
|
45 |
+
},
|
46 |
+
"size": {
|
47 |
+
"0": 315,
|
48 |
+
"1": 242
|
49 |
+
},
|
50 |
+
"flags": {},
|
51 |
+
"order": 7,
|
52 |
+
"mode": 0,
|
53 |
+
"inputs": [
|
54 |
+
{
|
55 |
+
"name": "image",
|
56 |
+
"type": "IMAGE",
|
57 |
+
"link": 180
|
58 |
+
},
|
59 |
+
{
|
60 |
+
"name": "get_image_size",
|
61 |
+
"type": "IMAGE",
|
62 |
+
"link": null,
|
63 |
+
"shape": 7
|
64 |
+
},
|
65 |
+
{
|
66 |
+
"name": "width_input",
|
67 |
+
"type": "INT",
|
68 |
+
"link": null,
|
69 |
+
"widget": {
|
70 |
+
"name": "width_input"
|
71 |
+
}
|
72 |
+
},
|
73 |
+
{
|
74 |
+
"name": "height_input",
|
75 |
+
"type": "INT",
|
76 |
+
"link": null,
|
77 |
+
"widget": {
|
78 |
+
"name": "height_input"
|
79 |
+
}
|
80 |
+
}
|
81 |
+
],
|
82 |
+
"outputs": [
|
83 |
+
{
|
84 |
+
"name": "IMAGE",
|
85 |
+
"type": "IMAGE",
|
86 |
+
"links": [
|
87 |
+
126
|
88 |
+
],
|
89 |
+
"slot_index": 0,
|
90 |
+
"shape": 3
|
91 |
+
},
|
92 |
+
{
|
93 |
+
"name": "width",
|
94 |
+
"type": "INT",
|
95 |
+
"links": null,
|
96 |
+
"shape": 3
|
97 |
+
},
|
98 |
+
{
|
99 |
+
"name": "height",
|
100 |
+
"type": "INT",
|
101 |
+
"links": null,
|
102 |
+
"shape": 3
|
103 |
+
}
|
104 |
+
],
|
105 |
+
"properties": {
|
106 |
+
"Node name for S&R": "ImageResizeKJ"
|
107 |
+
},
|
108 |
+
"widgets_values": [
|
109 |
+
720,
|
110 |
+
480,
|
111 |
+
"lanczos",
|
112 |
+
false,
|
113 |
+
2,
|
114 |
+
0,
|
115 |
+
0,
|
116 |
+
"disabled"
|
117 |
+
]
|
118 |
+
},
|
119 |
+
{
|
120 |
+
"id": 45,
|
121 |
+
"type": "VHS_LoadVideo",
|
122 |
+
"pos": {
|
123 |
+
"0": -93,
|
124 |
+
"1": -153
|
125 |
+
},
|
126 |
+
"size": [
|
127 |
+
247.455078125,
|
128 |
+
365.7275390625
|
129 |
+
],
|
130 |
+
"flags": {},
|
131 |
+
"order": 4,
|
132 |
+
"mode": 0,
|
133 |
+
"inputs": [
|
134 |
+
{
|
135 |
+
"name": "meta_batch",
|
136 |
+
"type": "VHS_BatchManager",
|
137 |
+
"link": null,
|
138 |
+
"shape": 7
|
139 |
+
},
|
140 |
+
{
|
141 |
+
"name": "vae",
|
142 |
+
"type": "VAE",
|
143 |
+
"link": null,
|
144 |
+
"shape": 7
|
145 |
+
},
|
146 |
+
{
|
147 |
+
"name": "frame_load_cap",
|
148 |
+
"type": "INT",
|
149 |
+
"link": 177,
|
150 |
+
"widget": {
|
151 |
+
"name": "frame_load_cap"
|
152 |
+
}
|
153 |
+
}
|
154 |
+
],
|
155 |
+
"outputs": [
|
156 |
+
{
|
157 |
+
"name": "IMAGE",
|
158 |
+
"type": "IMAGE",
|
159 |
+
"links": [
|
160 |
+
179
|
161 |
+
],
|
162 |
+
"slot_index": 0,
|
163 |
+
"shape": 3
|
164 |
+
},
|
165 |
+
{
|
166 |
+
"name": "frame_count",
|
167 |
+
"type": "INT",
|
168 |
+
"links": null,
|
169 |
+
"shape": 3
|
170 |
+
},
|
171 |
+
{
|
172 |
+
"name": "audio",
|
173 |
+
"type": "AUDIO",
|
174 |
+
"links": null,
|
175 |
+
"shape": 3
|
176 |
+
},
|
177 |
+
{
|
178 |
+
"name": "video_info",
|
179 |
+
"type": "VHS_VIDEOINFO",
|
180 |
+
"links": null,
|
181 |
+
"shape": 3
|
182 |
+
}
|
183 |
+
],
|
184 |
+
"properties": {
|
185 |
+
"Node name for S&R": "VHS_LoadVideo"
|
186 |
+
},
|
187 |
+
"widgets_values": {
|
188 |
+
"video": "jeep.mp4",
|
189 |
+
"force_rate": 0,
|
190 |
+
"force_size": "Disabled",
|
191 |
+
"custom_width": 512,
|
192 |
+
"custom_height": 512,
|
193 |
+
"frame_load_cap": 20,
|
194 |
+
"skip_first_frames": 0,
|
195 |
+
"select_every_nth": 1,
|
196 |
+
"choose video to upload": "image",
|
197 |
+
"videopreview": {
|
198 |
+
"hidden": false,
|
199 |
+
"paused": false,
|
200 |
+
"params": {
|
201 |
+
"frame_load_cap": 20,
|
202 |
+
"skip_first_frames": 0,
|
203 |
+
"force_rate": 0,
|
204 |
+
"filename": "jeep.mp4",
|
205 |
+
"type": "input",
|
206 |
+
"format": "video/mp4",
|
207 |
+
"select_every_nth": 1
|
208 |
+
}
|
209 |
+
}
|
210 |
+
}
|
211 |
+
},
|
212 |
+
{
|
213 |
+
"id": 70,
|
214 |
+
"type": "GetImageSizeAndCount",
|
215 |
+
"pos": {
|
216 |
+
"0": 214,
|
217 |
+
"1": -234
|
218 |
+
},
|
219 |
+
"size": {
|
220 |
+
"0": 202.2143096923828,
|
221 |
+
"1": 99.23601531982422
|
222 |
+
},
|
223 |
+
"flags": {},
|
224 |
+
"order": 6,
|
225 |
+
"mode": 0,
|
226 |
+
"inputs": [
|
227 |
+
{
|
228 |
+
"name": "image",
|
229 |
+
"type": "IMAGE",
|
230 |
+
"link": 179,
|
231 |
+
"slot_index": 0
|
232 |
+
}
|
233 |
+
],
|
234 |
+
"outputs": [
|
235 |
+
{
|
236 |
+
"name": "image",
|
237 |
+
"type": "IMAGE",
|
238 |
+
"links": [
|
239 |
+
180
|
240 |
+
],
|
241 |
+
"slot_index": 0,
|
242 |
+
"shape": 3
|
243 |
+
},
|
244 |
+
{
|
245 |
+
"name": "512 width",
|
246 |
+
"type": "INT",
|
247 |
+
"links": [],
|
248 |
+
"slot_index": 1,
|
249 |
+
"shape": 3
|
250 |
+
},
|
251 |
+
{
|
252 |
+
"name": "256 height",
|
253 |
+
"type": "INT",
|
254 |
+
"links": [],
|
255 |
+
"slot_index": 2,
|
256 |
+
"shape": 3
|
257 |
+
},
|
258 |
+
{
|
259 |
+
"name": "33 count",
|
260 |
+
"type": "INT",
|
261 |
+
"links": [],
|
262 |
+
"slot_index": 3,
|
263 |
+
"shape": 3
|
264 |
+
}
|
265 |
+
],
|
266 |
+
"properties": {
|
267 |
+
"Node name for S&R": "GetImageSizeAndCount"
|
268 |
+
},
|
269 |
+
"widgets_values": []
|
270 |
+
},
|
271 |
+
{
|
272 |
+
"id": 69,
|
273 |
+
"type": "INTConstant",
|
274 |
+
"pos": {
|
275 |
+
"0": -90,
|
276 |
+
"1": -305
|
277 |
+
},
|
278 |
+
"size": {
|
279 |
+
"0": 210,
|
280 |
+
"1": 58
|
281 |
+
},
|
282 |
+
"flags": {},
|
283 |
+
"order": 1,
|
284 |
+
"mode": 0,
|
285 |
+
"inputs": [],
|
286 |
+
"outputs": [
|
287 |
+
{
|
288 |
+
"name": "value",
|
289 |
+
"type": "INT",
|
290 |
+
"links": [
|
291 |
+
177
|
292 |
+
],
|
293 |
+
"shape": 3
|
294 |
+
}
|
295 |
+
],
|
296 |
+
"title": "Frames to load",
|
297 |
+
"properties": {
|
298 |
+
"Node name for S&R": "INTConstant"
|
299 |
+
},
|
300 |
+
"widgets_values": [
|
301 |
+
33
|
302 |
+
],
|
303 |
+
"color": "#1b4669",
|
304 |
+
"bgcolor": "#29699c"
|
305 |
+
},
|
306 |
+
{
|
307 |
+
"id": 58,
|
308 |
+
"type": "ImageConcanate",
|
309 |
+
"pos": {
|
310 |
+
"0": 1594,
|
311 |
+
"1": 230
|
312 |
+
},
|
313 |
+
"size": {
|
314 |
+
"0": 315,
|
315 |
+
"1": 102
|
316 |
+
},
|
317 |
+
"flags": {},
|
318 |
+
"order": 13,
|
319 |
+
"mode": 0,
|
320 |
+
"inputs": [
|
321 |
+
{
|
322 |
+
"name": "image1",
|
323 |
+
"type": "IMAGE",
|
324 |
+
"link": 191
|
325 |
+
},
|
326 |
+
{
|
327 |
+
"name": "image2",
|
328 |
+
"type": "IMAGE",
|
329 |
+
"link": 170
|
330 |
+
}
|
331 |
+
],
|
332 |
+
"outputs": [
|
333 |
+
{
|
334 |
+
"name": "IMAGE",
|
335 |
+
"type": "IMAGE",
|
336 |
+
"links": [
|
337 |
+
132
|
338 |
+
],
|
339 |
+
"slot_index": 0,
|
340 |
+
"shape": 3
|
341 |
+
}
|
342 |
+
],
|
343 |
+
"properties": {
|
344 |
+
"Node name for S&R": "ImageConcanate"
|
345 |
+
},
|
346 |
+
"widgets_values": [
|
347 |
+
"right",
|
348 |
+
false
|
349 |
+
]
|
350 |
+
},
|
351 |
+
{
|
352 |
+
"id": 55,
|
353 |
+
"type": "GetImageSizeAndCount",
|
354 |
+
"pos": {
|
355 |
+
"0": 1654,
|
356 |
+
"1": 77
|
357 |
+
},
|
358 |
+
"size": {
|
359 |
+
"0": 210,
|
360 |
+
"1": 86
|
361 |
+
},
|
362 |
+
"flags": {},
|
363 |
+
"order": 12,
|
364 |
+
"mode": 0,
|
365 |
+
"inputs": [
|
366 |
+
{
|
367 |
+
"name": "image",
|
368 |
+
"type": "IMAGE",
|
369 |
+
"link": 208,
|
370 |
+
"slot_index": 0
|
371 |
+
}
|
372 |
+
],
|
373 |
+
"outputs": [
|
374 |
+
{
|
375 |
+
"name": "image",
|
376 |
+
"type": "IMAGE",
|
377 |
+
"links": [
|
378 |
+
170
|
379 |
+
],
|
380 |
+
"slot_index": 0,
|
381 |
+
"shape": 3
|
382 |
+
},
|
383 |
+
{
|
384 |
+
"name": "720 width",
|
385 |
+
"type": "INT",
|
386 |
+
"links": null,
|
387 |
+
"shape": 3
|
388 |
+
},
|
389 |
+
{
|
390 |
+
"name": "480 height",
|
391 |
+
"type": "INT",
|
392 |
+
"links": null,
|
393 |
+
"shape": 3
|
394 |
+
},
|
395 |
+
{
|
396 |
+
"name": "33 count",
|
397 |
+
"type": "INT",
|
398 |
+
"links": [],
|
399 |
+
"slot_index": 3,
|
400 |
+
"shape": 3
|
401 |
+
}
|
402 |
+
],
|
403 |
+
"properties": {
|
404 |
+
"Node name for S&R": "GetImageSizeAndCount"
|
405 |
+
},
|
406 |
+
"widgets_values": []
|
407 |
+
},
|
408 |
+
{
|
409 |
+
"id": 77,
|
410 |
+
"type": "CogVideoImageEncode",
|
411 |
+
"pos": {
|
412 |
+
"0": 952,
|
413 |
+
"1": -118
|
414 |
+
},
|
415 |
+
"size": {
|
416 |
+
"0": 315,
|
417 |
+
"1": 122
|
418 |
+
},
|
419 |
+
"flags": {},
|
420 |
+
"order": 9,
|
421 |
+
"mode": 0,
|
422 |
+
"inputs": [
|
423 |
+
{
|
424 |
+
"name": "vae",
|
425 |
+
"type": "VAE",
|
426 |
+
"link": 209
|
427 |
+
},
|
428 |
+
{
|
429 |
+
"name": "start_image",
|
430 |
+
"type": "IMAGE",
|
431 |
+
"link": 210
|
432 |
+
},
|
433 |
+
{
|
434 |
+
"name": "end_image",
|
435 |
+
"type": "IMAGE",
|
436 |
+
"link": null,
|
437 |
+
"shape": 7
|
438 |
+
}
|
439 |
+
],
|
440 |
+
"outputs": [
|
441 |
+
{
|
442 |
+
"name": "samples",
|
443 |
+
"type": "LATENT",
|
444 |
+
"links": [
|
445 |
+
215
|
446 |
+
]
|
447 |
+
}
|
448 |
+
],
|
449 |
+
"properties": {
|
450 |
+
"Node name for S&R": "CogVideoImageEncode"
|
451 |
+
},
|
452 |
+
"widgets_values": [
|
453 |
+
false,
|
454 |
+
0
|
455 |
+
]
|
456 |
+
},
|
457 |
+
{
|
458 |
+
"id": 76,
|
459 |
+
"type": "CogVideoDecode",
|
460 |
+
"pos": {
|
461 |
+
"0": 1335,
|
462 |
+
"1": -123
|
463 |
+
},
|
464 |
+
"size": {
|
465 |
+
"0": 315,
|
466 |
+
"1": 198
|
467 |
+
},
|
468 |
+
"flags": {},
|
469 |
+
"order": 11,
|
470 |
+
"mode": 0,
|
471 |
+
"inputs": [
|
472 |
+
{
|
473 |
+
"name": "vae",
|
474 |
+
"type": "VAE",
|
475 |
+
"link": 206
|
476 |
+
},
|
477 |
+
{
|
478 |
+
"name": "samples",
|
479 |
+
"type": "LATENT",
|
480 |
+
"link": 216
|
481 |
+
}
|
482 |
+
],
|
483 |
+
"outputs": [
|
484 |
+
{
|
485 |
+
"name": "images",
|
486 |
+
"type": "IMAGE",
|
487 |
+
"links": [
|
488 |
+
208
|
489 |
+
]
|
490 |
+
}
|
491 |
+
],
|
492 |
+
"properties": {
|
493 |
+
"Node name for S&R": "CogVideoDecode"
|
494 |
+
},
|
495 |
+
"widgets_values": [
|
496 |
+
true,
|
497 |
+
240,
|
498 |
+
360,
|
499 |
+
0.2,
|
500 |
+
0.2,
|
501 |
+
true
|
502 |
+
]
|
503 |
+
},
|
504 |
+
{
|
505 |
+
"id": 30,
|
506 |
+
"type": "CogVideoTextEncode",
|
507 |
+
"pos": {
|
508 |
+
"0": 491,
|
509 |
+
"1": 372
|
510 |
+
},
|
511 |
+
"size": [
|
512 |
+
478.6890949595422,
|
513 |
+
215.66308749666905
|
514 |
+
],
|
515 |
+
"flags": {},
|
516 |
+
"order": 3,
|
517 |
+
"mode": 0,
|
518 |
+
"inputs": [
|
519 |
+
{
|
520 |
+
"name": "clip",
|
521 |
+
"type": "CLIP",
|
522 |
+
"link": 54
|
523 |
+
}
|
524 |
+
],
|
525 |
+
"outputs": [
|
526 |
+
{
|
527 |
+
"name": "conditioning",
|
528 |
+
"type": "CONDITIONING",
|
529 |
+
"links": [
|
530 |
+
213
|
531 |
+
],
|
532 |
+
"slot_index": 0,
|
533 |
+
"shape": 3
|
534 |
+
},
|
535 |
+
{
|
536 |
+
"name": "clip",
|
537 |
+
"type": "CLIP",
|
538 |
+
"links": [
|
539 |
+
217
|
540 |
+
],
|
541 |
+
"slot_index": 1
|
542 |
+
}
|
543 |
+
],
|
544 |
+
"properties": {
|
545 |
+
"Node name for S&R": "CogVideoTextEncode"
|
546 |
+
},
|
547 |
+
"widgets_values": [
|
548 |
+
"A high-definition nature video showcasing a brown bear as it gracefully runs down a crystal-clear stream, surrounded by the serene ambiance of a dense, verdant forest. The sunlight filters through the canopy of tall trees, casting dappled light on the forest floor, while the gentle sound of flowing water and rustling leaves creates a peaceful atmosphere. The brown bear's fur glistens in the sunlight, highlighting its striking red and white markings as it navigates the stream with agility and playfulness.",
|
549 |
+
1,
|
550 |
+
false
|
551 |
+
]
|
552 |
+
},
|
553 |
+
{
|
554 |
+
"id": 31,
|
555 |
+
"type": "CogVideoTextEncode",
|
556 |
+
"pos": {
|
557 |
+
"0": 504,
|
558 |
+
"1": 651
|
559 |
+
},
|
560 |
+
"size": {
|
561 |
+
"0": 463.01251220703125,
|
562 |
+
"1": 144
|
563 |
+
},
|
564 |
+
"flags": {},
|
565 |
+
"order": 5,
|
566 |
+
"mode": 0,
|
567 |
+
"inputs": [
|
568 |
+
{
|
569 |
+
"name": "clip",
|
570 |
+
"type": "CLIP",
|
571 |
+
"link": 217
|
572 |
+
}
|
573 |
+
],
|
574 |
+
"outputs": [
|
575 |
+
{
|
576 |
+
"name": "conditioning",
|
577 |
+
"type": "CONDITIONING",
|
578 |
+
"links": [
|
579 |
+
214
|
580 |
+
],
|
581 |
+
"slot_index": 0,
|
582 |
+
"shape": 3
|
583 |
+
},
|
584 |
+
{
|
585 |
+
"name": "clip",
|
586 |
+
"type": "CLIP",
|
587 |
+
"links": null
|
588 |
+
}
|
589 |
+
],
|
590 |
+
"properties": {
|
591 |
+
"Node name for S&R": "CogVideoTextEncode"
|
592 |
+
},
|
593 |
+
"widgets_values": [
|
594 |
+
"",
|
595 |
+
1,
|
596 |
+
true
|
597 |
+
]
|
598 |
+
},
|
599 |
+
{
|
600 |
+
"id": 78,
|
601 |
+
"type": "CogVideoSampler",
|
602 |
+
"pos": {
|
603 |
+
"0": 1083,
|
604 |
+
"1": 255
|
605 |
+
},
|
606 |
+
"size": [
|
607 |
+
330,
|
608 |
+
574
|
609 |
+
],
|
610 |
+
"flags": {},
|
611 |
+
"order": 10,
|
612 |
+
"mode": 0,
|
613 |
+
"inputs": [
|
614 |
+
{
|
615 |
+
"name": "model",
|
616 |
+
"type": "COGVIDEOMODEL",
|
617 |
+
"link": 212
|
618 |
+
},
|
619 |
+
{
|
620 |
+
"name": "positive",
|
621 |
+
"type": "CONDITIONING",
|
622 |
+
"link": 213
|
623 |
+
},
|
624 |
+
{
|
625 |
+
"name": "negative",
|
626 |
+
"type": "CONDITIONING",
|
627 |
+
"link": 214
|
628 |
+
},
|
629 |
+
{
|
630 |
+
"name": "samples",
|
631 |
+
"type": "LATENT",
|
632 |
+
"link": 215,
|
633 |
+
"shape": 7
|
634 |
+
},
|
635 |
+
{
|
636 |
+
"name": "image_cond_latents",
|
637 |
+
"type": "LATENT",
|
638 |
+
"link": null,
|
639 |
+
"shape": 7
|
640 |
+
},
|
641 |
+
{
|
642 |
+
"name": "context_options",
|
643 |
+
"type": "COGCONTEXT",
|
644 |
+
"link": null,
|
645 |
+
"shape": 7
|
646 |
+
},
|
647 |
+
{
|
648 |
+
"name": "controlnet",
|
649 |
+
"type": "COGVIDECONTROLNET",
|
650 |
+
"link": null,
|
651 |
+
"shape": 7
|
652 |
+
},
|
653 |
+
{
|
654 |
+
"name": "tora_trajectory",
|
655 |
+
"type": "TORAFEATURES",
|
656 |
+
"link": null,
|
657 |
+
"shape": 7
|
658 |
+
},
|
659 |
+
{
|
660 |
+
"name": "fastercache",
|
661 |
+
"type": "FASTERCACHEARGS",
|
662 |
+
"link": null,
|
663 |
+
"shape": 7
|
664 |
+
},
|
665 |
+
{
|
666 |
+
"name": "num_frames",
|
667 |
+
"type": "INT",
|
668 |
+
"link": 218,
|
669 |
+
"widget": {
|
670 |
+
"name": "num_frames"
|
671 |
+
}
|
672 |
+
}
|
673 |
+
],
|
674 |
+
"outputs": [
|
675 |
+
{
|
676 |
+
"name": "samples",
|
677 |
+
"type": "LATENT",
|
678 |
+
"links": [
|
679 |
+
216
|
680 |
+
]
|
681 |
+
}
|
682 |
+
],
|
683 |
+
"properties": {
|
684 |
+
"Node name for S&R": "CogVideoSampler"
|
685 |
+
},
|
686 |
+
"widgets_values": [
|
687 |
+
49,
|
688 |
+
25,
|
689 |
+
6,
|
690 |
+
0,
|
691 |
+
"fixed",
|
692 |
+
"CogVideoXDDIM",
|
693 |
+
0.8
|
694 |
+
]
|
695 |
+
},
|
696 |
+
{
|
697 |
+
"id": 57,
|
698 |
+
"type": "GetImageSizeAndCount",
|
699 |
+
"pos": {
|
700 |
+
"0": 595,
|
701 |
+
"1": -79
|
702 |
+
},
|
703 |
+
"size": {
|
704 |
+
"0": 202.2143096923828,
|
705 |
+
"1": 99.23601531982422
|
706 |
+
},
|
707 |
+
"flags": {},
|
708 |
+
"order": 8,
|
709 |
+
"mode": 0,
|
710 |
+
"inputs": [
|
711 |
+
{
|
712 |
+
"name": "image",
|
713 |
+
"type": "IMAGE",
|
714 |
+
"link": 126,
|
715 |
+
"slot_index": 0
|
716 |
+
}
|
717 |
+
],
|
718 |
+
"outputs": [
|
719 |
+
{
|
720 |
+
"name": "image",
|
721 |
+
"type": "IMAGE",
|
722 |
+
"links": [
|
723 |
+
191,
|
724 |
+
210
|
725 |
+
],
|
726 |
+
"slot_index": 0,
|
727 |
+
"shape": 3
|
728 |
+
},
|
729 |
+
{
|
730 |
+
"name": "720 width",
|
731 |
+
"type": "INT",
|
732 |
+
"links": [],
|
733 |
+
"slot_index": 1,
|
734 |
+
"shape": 3
|
735 |
+
},
|
736 |
+
{
|
737 |
+
"name": "480 height",
|
738 |
+
"type": "INT",
|
739 |
+
"links": [],
|
740 |
+
"slot_index": 2,
|
741 |
+
"shape": 3
|
742 |
+
},
|
743 |
+
{
|
744 |
+
"name": "33 count",
|
745 |
+
"type": "INT",
|
746 |
+
"links": [
|
747 |
+
218
|
748 |
+
],
|
749 |
+
"slot_index": 3,
|
750 |
+
"shape": 3
|
751 |
+
}
|
752 |
+
],
|
753 |
+
"properties": {
|
754 |
+
"Node name for S&R": "GetImageSizeAndCount"
|
755 |
+
},
|
756 |
+
"widgets_values": []
|
757 |
+
},
|
758 |
+
{
|
759 |
+
"id": 75,
|
760 |
+
"type": "DownloadAndLoadCogVideoModel",
|
761 |
+
"pos": {
|
762 |
+
"0": 606,
|
763 |
+
"1": 85
|
764 |
+
},
|
765 |
+
"size": {
|
766 |
+
"0": 315,
|
767 |
+
"1": 218
|
768 |
+
},
|
769 |
+
"flags": {},
|
770 |
+
"order": 2,
|
771 |
+
"mode": 0,
|
772 |
+
"inputs": [
|
773 |
+
{
|
774 |
+
"name": "block_edit",
|
775 |
+
"type": "TRANSFORMERBLOCKS",
|
776 |
+
"link": null,
|
777 |
+
"shape": 7
|
778 |
+
},
|
779 |
+
{
|
780 |
+
"name": "lora",
|
781 |
+
"type": "COGLORA",
|
782 |
+
"link": null,
|
783 |
+
"shape": 7
|
784 |
+
},
|
785 |
+
{
|
786 |
+
"name": "compile_args",
|
787 |
+
"type": "COMPILEARGS",
|
788 |
+
"link": null,
|
789 |
+
"shape": 7
|
790 |
+
}
|
791 |
+
],
|
792 |
+
"outputs": [
|
793 |
+
{
|
794 |
+
"name": "model",
|
795 |
+
"type": "COGVIDEOMODEL",
|
796 |
+
"links": [
|
797 |
+
212
|
798 |
+
]
|
799 |
+
},
|
800 |
+
{
|
801 |
+
"name": "vae",
|
802 |
+
"type": "VAE",
|
803 |
+
"links": [
|
804 |
+
206,
|
805 |
+
209
|
806 |
+
]
|
807 |
+
}
|
808 |
+
],
|
809 |
+
"properties": {
|
810 |
+
"Node name for S&R": "DownloadAndLoadCogVideoModel"
|
811 |
+
},
|
812 |
+
"widgets_values": [
|
813 |
+
"THUDM/CogVideoX-5b",
|
814 |
+
"bf16",
|
815 |
+
"disabled",
|
816 |
+
false,
|
817 |
+
"sdpa",
|
818 |
+
"main_device"
|
819 |
+
]
|
820 |
+
},
|
821 |
+
{
|
822 |
+
"id": 47,
|
823 |
+
"type": "VHS_VideoCombine",
|
824 |
+
"pos": {
|
825 |
+
"0": 1946,
|
826 |
+
"1": -172
|
827 |
+
},
|
828 |
+
"size": [
|
829 |
+
1110,
|
830 |
+
687.3333333333333
|
831 |
+
],
|
832 |
+
"flags": {},
|
833 |
+
"order": 14,
|
834 |
+
"mode": 0,
|
835 |
+
"inputs": [
|
836 |
+
{
|
837 |
+
"name": "images",
|
838 |
+
"type": "IMAGE",
|
839 |
+
"link": 132
|
840 |
+
},
|
841 |
+
{
|
842 |
+
"name": "audio",
|
843 |
+
"type": "AUDIO",
|
844 |
+
"link": null,
|
845 |
+
"shape": 7
|
846 |
+
},
|
847 |
+
{
|
848 |
+
"name": "meta_batch",
|
849 |
+
"type": "VHS_BatchManager",
|
850 |
+
"link": null,
|
851 |
+
"shape": 7
|
852 |
+
},
|
853 |
+
{
|
854 |
+
"name": "vae",
|
855 |
+
"type": "VAE",
|
856 |
+
"link": null,
|
857 |
+
"shape": 7
|
858 |
+
}
|
859 |
+
],
|
860 |
+
"outputs": [
|
861 |
+
{
|
862 |
+
"name": "Filenames",
|
863 |
+
"type": "VHS_FILENAMES",
|
864 |
+
"links": null,
|
865 |
+
"shape": 3
|
866 |
+
}
|
867 |
+
],
|
868 |
+
"properties": {
|
869 |
+
"Node name for S&R": "VHS_VideoCombine"
|
870 |
+
},
|
871 |
+
"widgets_values": {
|
872 |
+
"frame_rate": 8,
|
873 |
+
"loop_count": 0,
|
874 |
+
"filename_prefix": "CogVideoX_vid2vid",
|
875 |
+
"format": "video/h264-mp4",
|
876 |
+
"pix_fmt": "yuv420p",
|
877 |
+
"crf": 19,
|
878 |
+
"save_metadata": true,
|
879 |
+
"pingpong": false,
|
880 |
+
"save_output": true,
|
881 |
+
"videopreview": {
|
882 |
+
"hidden": false,
|
883 |
+
"paused": false,
|
884 |
+
"params": {
|
885 |
+
"filename": "CogVideoX_vid2vid_00003.mp4",
|
886 |
+
"subfolder": "",
|
887 |
+
"type": "temp",
|
888 |
+
"format": "video/h264-mp4",
|
889 |
+
"frame_rate": 8
|
890 |
+
}
|
891 |
+
}
|
892 |
+
}
|
893 |
+
}
|
894 |
+
],
|
895 |
+
"links": [
|
896 |
+
[
|
897 |
+
54,
|
898 |
+
20,
|
899 |
+
0,
|
900 |
+
30,
|
901 |
+
0,
|
902 |
+
"CLIP"
|
903 |
+
],
|
904 |
+
[
|
905 |
+
126,
|
906 |
+
41,
|
907 |
+
0,
|
908 |
+
57,
|
909 |
+
0,
|
910 |
+
"IMAGE"
|
911 |
+
],
|
912 |
+
[
|
913 |
+
132,
|
914 |
+
58,
|
915 |
+
0,
|
916 |
+
47,
|
917 |
+
0,
|
918 |
+
"IMAGE"
|
919 |
+
],
|
920 |
+
[
|
921 |
+
170,
|
922 |
+
55,
|
923 |
+
0,
|
924 |
+
58,
|
925 |
+
1,
|
926 |
+
"IMAGE"
|
927 |
+
],
|
928 |
+
[
|
929 |
+
177,
|
930 |
+
69,
|
931 |
+
0,
|
932 |
+
45,
|
933 |
+
2,
|
934 |
+
"INT"
|
935 |
+
],
|
936 |
+
[
|
937 |
+
179,
|
938 |
+
45,
|
939 |
+
0,
|
940 |
+
70,
|
941 |
+
0,
|
942 |
+
"IMAGE"
|
943 |
+
],
|
944 |
+
[
|
945 |
+
180,
|
946 |
+
70,
|
947 |
+
0,
|
948 |
+
41,
|
949 |
+
0,
|
950 |
+
"IMAGE"
|
951 |
+
],
|
952 |
+
[
|
953 |
+
191,
|
954 |
+
57,
|
955 |
+
0,
|
956 |
+
58,
|
957 |
+
0,
|
958 |
+
"IMAGE"
|
959 |
+
],
|
960 |
+
[
|
961 |
+
206,
|
962 |
+
75,
|
963 |
+
1,
|
964 |
+
76,
|
965 |
+
0,
|
966 |
+
"VAE"
|
967 |
+
],
|
968 |
+
[
|
969 |
+
208,
|
970 |
+
76,
|
971 |
+
0,
|
972 |
+
55,
|
973 |
+
0,
|
974 |
+
"IMAGE"
|
975 |
+
],
|
976 |
+
[
|
977 |
+
209,
|
978 |
+
75,
|
979 |
+
1,
|
980 |
+
77,
|
981 |
+
0,
|
982 |
+
"VAE"
|
983 |
+
],
|
984 |
+
[
|
985 |
+
210,
|
986 |
+
57,
|
987 |
+
0,
|
988 |
+
77,
|
989 |
+
1,
|
990 |
+
"IMAGE"
|
991 |
+
],
|
992 |
+
[
|
993 |
+
212,
|
994 |
+
75,
|
995 |
+
0,
|
996 |
+
78,
|
997 |
+
0,
|
998 |
+
"COGVIDEOMODEL"
|
999 |
+
],
|
1000 |
+
[
|
1001 |
+
213,
|
1002 |
+
30,
|
1003 |
+
0,
|
1004 |
+
78,
|
1005 |
+
1,
|
1006 |
+
"CONDITIONING"
|
1007 |
+
],
|
1008 |
+
[
|
1009 |
+
214,
|
1010 |
+
31,
|
1011 |
+
0,
|
1012 |
+
78,
|
1013 |
+
2,
|
1014 |
+
"CONDITIONING"
|
1015 |
+
],
|
1016 |
+
[
|
1017 |
+
215,
|
1018 |
+
77,
|
1019 |
+
0,
|
1020 |
+
78,
|
1021 |
+
3,
|
1022 |
+
"LATENT"
|
1023 |
+
],
|
1024 |
+
[
|
1025 |
+
216,
|
1026 |
+
78,
|
1027 |
+
0,
|
1028 |
+
76,
|
1029 |
+
1,
|
1030 |
+
"LATENT"
|
1031 |
+
],
|
1032 |
+
[
|
1033 |
+
217,
|
1034 |
+
30,
|
1035 |
+
1,
|
1036 |
+
31,
|
1037 |
+
0,
|
1038 |
+
"CLIP"
|
1039 |
+
],
|
1040 |
+
[
|
1041 |
+
218,
|
1042 |
+
57,
|
1043 |
+
3,
|
1044 |
+
78,
|
1045 |
+
9,
|
1046 |
+
"INT"
|
1047 |
+
]
|
1048 |
+
],
|
1049 |
+
"groups": [],
|
1050 |
+
"config": {},
|
1051 |
+
"extra": {
|
1052 |
+
"ds": {
|
1053 |
+
"scale": 0.8390545288825798,
|
1054 |
+
"offset": [
|
1055 |
+
-318.82552550589344,
|
1056 |
+
331.70430573737934
|
1057 |
+
]
|
1058 |
+
}
|
1059 |
+
},
|
1060 |
+
"version": 0.4
|
1061 |
+
}
|
custom_nodes/ComfyUI-CogVideoXWrapper/example_workflows/cogvideox_1_5_5b_I2V_01.json
ADDED
@@ -0,0 +1,688 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"last_node_id": 64,
|
3 |
+
"last_link_id": 149,
|
4 |
+
"nodes": [
|
5 |
+
{
|
6 |
+
"id": 63,
|
7 |
+
"type": "CogVideoSampler",
|
8 |
+
"pos": {
|
9 |
+
"0": 1142,
|
10 |
+
"1": 74
|
11 |
+
},
|
12 |
+
"size": {
|
13 |
+
"0": 330,
|
14 |
+
"1": 574
|
15 |
+
},
|
16 |
+
"flags": {},
|
17 |
+
"order": 7,
|
18 |
+
"mode": 0,
|
19 |
+
"inputs": [
|
20 |
+
{
|
21 |
+
"name": "model",
|
22 |
+
"type": "COGVIDEOMODEL",
|
23 |
+
"link": 144
|
24 |
+
},
|
25 |
+
{
|
26 |
+
"name": "positive",
|
27 |
+
"type": "CONDITIONING",
|
28 |
+
"link": 145
|
29 |
+
},
|
30 |
+
{
|
31 |
+
"name": "negative",
|
32 |
+
"type": "CONDITIONING",
|
33 |
+
"link": 146
|
34 |
+
},
|
35 |
+
{
|
36 |
+
"name": "samples",
|
37 |
+
"type": "LATENT",
|
38 |
+
"link": null,
|
39 |
+
"shape": 7
|
40 |
+
},
|
41 |
+
{
|
42 |
+
"name": "image_cond_latents",
|
43 |
+
"type": "LATENT",
|
44 |
+
"link": 147,
|
45 |
+
"shape": 7
|
46 |
+
},
|
47 |
+
{
|
48 |
+
"name": "context_options",
|
49 |
+
"type": "COGCONTEXT",
|
50 |
+
"link": null,
|
51 |
+
"shape": 7
|
52 |
+
},
|
53 |
+
{
|
54 |
+
"name": "controlnet",
|
55 |
+
"type": "COGVIDECONTROLNET",
|
56 |
+
"link": null,
|
57 |
+
"shape": 7
|
58 |
+
},
|
59 |
+
{
|
60 |
+
"name": "tora_trajectory",
|
61 |
+
"type": "TORAFEATURES",
|
62 |
+
"link": null,
|
63 |
+
"shape": 7
|
64 |
+
},
|
65 |
+
{
|
66 |
+
"name": "fastercache",
|
67 |
+
"type": "FASTERCACHEARGS",
|
68 |
+
"link": null,
|
69 |
+
"shape": 7
|
70 |
+
}
|
71 |
+
],
|
72 |
+
"outputs": [
|
73 |
+
{
|
74 |
+
"name": "samples",
|
75 |
+
"type": "LATENT",
|
76 |
+
"links": [
|
77 |
+
148
|
78 |
+
]
|
79 |
+
}
|
80 |
+
],
|
81 |
+
"properties": {
|
82 |
+
"Node name for S&R": "CogVideoSampler"
|
83 |
+
},
|
84 |
+
"widgets_values": [
|
85 |
+
49,
|
86 |
+
25,
|
87 |
+
6,
|
88 |
+
0,
|
89 |
+
"fixed",
|
90 |
+
"CogVideoXDDIM",
|
91 |
+
1
|
92 |
+
]
|
93 |
+
},
|
94 |
+
{
|
95 |
+
"id": 62,
|
96 |
+
"type": "CogVideoImageEncode",
|
97 |
+
"pos": {
|
98 |
+
"0": 1149,
|
99 |
+
"1": 711
|
100 |
+
},
|
101 |
+
"size": {
|
102 |
+
"0": 315,
|
103 |
+
"1": 122
|
104 |
+
},
|
105 |
+
"flags": {},
|
106 |
+
"order": 5,
|
107 |
+
"mode": 0,
|
108 |
+
"inputs": [
|
109 |
+
{
|
110 |
+
"name": "vae",
|
111 |
+
"type": "VAE",
|
112 |
+
"link": 141
|
113 |
+
},
|
114 |
+
{
|
115 |
+
"name": "start_image",
|
116 |
+
"type": "IMAGE",
|
117 |
+
"link": 142
|
118 |
+
},
|
119 |
+
{
|
120 |
+
"name": "end_image",
|
121 |
+
"type": "IMAGE",
|
122 |
+
"link": null,
|
123 |
+
"shape": 7
|
124 |
+
}
|
125 |
+
],
|
126 |
+
"outputs": [
|
127 |
+
{
|
128 |
+
"name": "samples",
|
129 |
+
"type": "LATENT",
|
130 |
+
"links": [
|
131 |
+
147
|
132 |
+
]
|
133 |
+
}
|
134 |
+
],
|
135 |
+
"properties": {
|
136 |
+
"Node name for S&R": "CogVideoImageEncode"
|
137 |
+
},
|
138 |
+
"widgets_values": [
|
139 |
+
false,
|
140 |
+
0
|
141 |
+
]
|
142 |
+
},
|
143 |
+
{
|
144 |
+
"id": 30,
|
145 |
+
"type": "CogVideoTextEncode",
|
146 |
+
"pos": {
|
147 |
+
"0": 493,
|
148 |
+
"1": 303
|
149 |
+
},
|
150 |
+
"size": {
|
151 |
+
"0": 471.90142822265625,
|
152 |
+
"1": 168.08047485351562
|
153 |
+
},
|
154 |
+
"flags": {},
|
155 |
+
"order": 4,
|
156 |
+
"mode": 0,
|
157 |
+
"inputs": [
|
158 |
+
{
|
159 |
+
"name": "clip",
|
160 |
+
"type": "CLIP",
|
161 |
+
"link": 54
|
162 |
+
}
|
163 |
+
],
|
164 |
+
"outputs": [
|
165 |
+
{
|
166 |
+
"name": "conditioning",
|
167 |
+
"type": "CONDITIONING",
|
168 |
+
"links": [
|
169 |
+
145
|
170 |
+
],
|
171 |
+
"slot_index": 0,
|
172 |
+
"shape": 3
|
173 |
+
},
|
174 |
+
{
|
175 |
+
"name": "clip",
|
176 |
+
"type": "CLIP",
|
177 |
+
"links": [
|
178 |
+
149
|
179 |
+
],
|
180 |
+
"slot_index": 1
|
181 |
+
}
|
182 |
+
],
|
183 |
+
"properties": {
|
184 |
+
"Node name for S&R": "CogVideoTextEncode"
|
185 |
+
},
|
186 |
+
"widgets_values": [
|
187 |
+
"a majestic stag is grazing in an enhanced forest, basking in the setting sun filtered by the trees",
|
188 |
+
1,
|
189 |
+
false
|
190 |
+
]
|
191 |
+
},
|
192 |
+
{
|
193 |
+
"id": 36,
|
194 |
+
"type": "LoadImage",
|
195 |
+
"pos": {
|
196 |
+
"0": 335,
|
197 |
+
"1": 731
|
198 |
+
},
|
199 |
+
"size": {
|
200 |
+
"0": 402.06353759765625,
|
201 |
+
"1": 396.6225891113281
|
202 |
+
},
|
203 |
+
"flags": {},
|
204 |
+
"order": 0,
|
205 |
+
"mode": 0,
|
206 |
+
"inputs": [],
|
207 |
+
"outputs": [
|
208 |
+
{
|
209 |
+
"name": "IMAGE",
|
210 |
+
"type": "IMAGE",
|
211 |
+
"links": [
|
212 |
+
71
|
213 |
+
],
|
214 |
+
"slot_index": 0,
|
215 |
+
"shape": 3
|
216 |
+
},
|
217 |
+
{
|
218 |
+
"name": "MASK",
|
219 |
+
"type": "MASK",
|
220 |
+
"links": null,
|
221 |
+
"shape": 3
|
222 |
+
}
|
223 |
+
],
|
224 |
+
"properties": {
|
225 |
+
"Node name for S&R": "LoadImage"
|
226 |
+
},
|
227 |
+
"widgets_values": [
|
228 |
+
"sd3stag.png",
|
229 |
+
"image"
|
230 |
+
]
|
231 |
+
},
|
232 |
+
{
|
233 |
+
"id": 20,
|
234 |
+
"type": "CLIPLoader",
|
235 |
+
"pos": {
|
236 |
+
"0": -2,
|
237 |
+
"1": 304
|
238 |
+
},
|
239 |
+
"size": {
|
240 |
+
"0": 451.30548095703125,
|
241 |
+
"1": 82
|
242 |
+
},
|
243 |
+
"flags": {},
|
244 |
+
"order": 1,
|
245 |
+
"mode": 0,
|
246 |
+
"inputs": [],
|
247 |
+
"outputs": [
|
248 |
+
{
|
249 |
+
"name": "CLIP",
|
250 |
+
"type": "CLIP",
|
251 |
+
"links": [
|
252 |
+
54
|
253 |
+
],
|
254 |
+
"slot_index": 0,
|
255 |
+
"shape": 3
|
256 |
+
}
|
257 |
+
],
|
258 |
+
"properties": {
|
259 |
+
"Node name for S&R": "CLIPLoader"
|
260 |
+
},
|
261 |
+
"widgets_values": [
|
262 |
+
"t5\\google_t5-v1_1-xxl_encoderonly-fp8_e4m3fn.safetensors",
|
263 |
+
"sd3"
|
264 |
+
]
|
265 |
+
},
|
266 |
+
{
|
267 |
+
"id": 60,
|
268 |
+
"type": "CogVideoDecode",
|
269 |
+
"pos": {
|
270 |
+
"0": 1523,
|
271 |
+
"1": -6
|
272 |
+
},
|
273 |
+
"size": {
|
274 |
+
"0": 315,
|
275 |
+
"1": 198
|
276 |
+
},
|
277 |
+
"flags": {},
|
278 |
+
"order": 8,
|
279 |
+
"mode": 0,
|
280 |
+
"inputs": [
|
281 |
+
{
|
282 |
+
"name": "vae",
|
283 |
+
"type": "VAE",
|
284 |
+
"link": 132
|
285 |
+
},
|
286 |
+
{
|
287 |
+
"name": "samples",
|
288 |
+
"type": "LATENT",
|
289 |
+
"link": 148
|
290 |
+
}
|
291 |
+
],
|
292 |
+
"outputs": [
|
293 |
+
{
|
294 |
+
"name": "images",
|
295 |
+
"type": "IMAGE",
|
296 |
+
"links": [
|
297 |
+
134
|
298 |
+
]
|
299 |
+
}
|
300 |
+
],
|
301 |
+
"properties": {
|
302 |
+
"Node name for S&R": "CogVideoDecode"
|
303 |
+
},
|
304 |
+
"widgets_values": [
|
305 |
+
true,
|
306 |
+
240,
|
307 |
+
360,
|
308 |
+
0.2,
|
309 |
+
0.2,
|
310 |
+
true
|
311 |
+
]
|
312 |
+
},
|
313 |
+
{
|
314 |
+
"id": 37,
|
315 |
+
"type": "ImageResizeKJ",
|
316 |
+
"pos": {
|
317 |
+
"0": 784,
|
318 |
+
"1": 731
|
319 |
+
},
|
320 |
+
"size": {
|
321 |
+
"0": 315,
|
322 |
+
"1": 266
|
323 |
+
},
|
324 |
+
"flags": {},
|
325 |
+
"order": 3,
|
326 |
+
"mode": 0,
|
327 |
+
"inputs": [
|
328 |
+
{
|
329 |
+
"name": "image",
|
330 |
+
"type": "IMAGE",
|
331 |
+
"link": 71
|
332 |
+
},
|
333 |
+
{
|
334 |
+
"name": "get_image_size",
|
335 |
+
"type": "IMAGE",
|
336 |
+
"link": null,
|
337 |
+
"shape": 7
|
338 |
+
},
|
339 |
+
{
|
340 |
+
"name": "width_input",
|
341 |
+
"type": "INT",
|
342 |
+
"link": null,
|
343 |
+
"widget": {
|
344 |
+
"name": "width_input"
|
345 |
+
}
|
346 |
+
},
|
347 |
+
{
|
348 |
+
"name": "height_input",
|
349 |
+
"type": "INT",
|
350 |
+
"link": null,
|
351 |
+
"widget": {
|
352 |
+
"name": "height_input"
|
353 |
+
}
|
354 |
+
}
|
355 |
+
],
|
356 |
+
"outputs": [
|
357 |
+
{
|
358 |
+
"name": "IMAGE",
|
359 |
+
"type": "IMAGE",
|
360 |
+
"links": [
|
361 |
+
142
|
362 |
+
],
|
363 |
+
"slot_index": 0,
|
364 |
+
"shape": 3
|
365 |
+
},
|
366 |
+
{
|
367 |
+
"name": "width",
|
368 |
+
"type": "INT",
|
369 |
+
"links": null,
|
370 |
+
"shape": 3
|
371 |
+
},
|
372 |
+
{
|
373 |
+
"name": "height",
|
374 |
+
"type": "INT",
|
375 |
+
"links": null,
|
376 |
+
"shape": 3
|
377 |
+
}
|
378 |
+
],
|
379 |
+
"properties": {
|
380 |
+
"Node name for S&R": "ImageResizeKJ"
|
381 |
+
},
|
382 |
+
"widgets_values": [
|
383 |
+
1360,
|
384 |
+
768,
|
385 |
+
"lanczos",
|
386 |
+
false,
|
387 |
+
16,
|
388 |
+
0,
|
389 |
+
0,
|
390 |
+
"disabled"
|
391 |
+
]
|
392 |
+
},
|
393 |
+
{
|
394 |
+
"id": 31,
|
395 |
+
"type": "CogVideoTextEncode",
|
396 |
+
"pos": {
|
397 |
+
"0": 497,
|
398 |
+
"1": 520
|
399 |
+
},
|
400 |
+
"size": {
|
401 |
+
"0": 463.01251220703125,
|
402 |
+
"1": 144
|
403 |
+
},
|
404 |
+
"flags": {},
|
405 |
+
"order": 6,
|
406 |
+
"mode": 0,
|
407 |
+
"inputs": [
|
408 |
+
{
|
409 |
+
"name": "clip",
|
410 |
+
"type": "CLIP",
|
411 |
+
"link": 149
|
412 |
+
}
|
413 |
+
],
|
414 |
+
"outputs": [
|
415 |
+
{
|
416 |
+
"name": "conditioning",
|
417 |
+
"type": "CONDITIONING",
|
418 |
+
"links": [
|
419 |
+
146
|
420 |
+
],
|
421 |
+
"slot_index": 0,
|
422 |
+
"shape": 3
|
423 |
+
},
|
424 |
+
{
|
425 |
+
"name": "clip",
|
426 |
+
"type": "CLIP",
|
427 |
+
"links": null
|
428 |
+
}
|
429 |
+
],
|
430 |
+
"properties": {
|
431 |
+
"Node name for S&R": "CogVideoTextEncode"
|
432 |
+
},
|
433 |
+
"widgets_values": [
|
434 |
+
"",
|
435 |
+
1,
|
436 |
+
true
|
437 |
+
]
|
438 |
+
},
|
439 |
+
{
|
440 |
+
"id": 59,
|
441 |
+
"type": "DownloadAndLoadCogVideoModel",
|
442 |
+
"pos": {
|
443 |
+
"0": 622,
|
444 |
+
"1": -25
|
445 |
+
},
|
446 |
+
"size": {
|
447 |
+
"0": 315,
|
448 |
+
"1": 218
|
449 |
+
},
|
450 |
+
"flags": {},
|
451 |
+
"order": 2,
|
452 |
+
"mode": 0,
|
453 |
+
"inputs": [
|
454 |
+
{
|
455 |
+
"name": "block_edit",
|
456 |
+
"type": "TRANSFORMERBLOCKS",
|
457 |
+
"link": null,
|
458 |
+
"shape": 7
|
459 |
+
},
|
460 |
+
{
|
461 |
+
"name": "lora",
|
462 |
+
"type": "COGLORA",
|
463 |
+
"link": null,
|
464 |
+
"shape": 7
|
465 |
+
},
|
466 |
+
{
|
467 |
+
"name": "compile_args",
|
468 |
+
"type": "COMPILEARGS",
|
469 |
+
"link": null,
|
470 |
+
"shape": 7
|
471 |
+
}
|
472 |
+
],
|
473 |
+
"outputs": [
|
474 |
+
{
|
475 |
+
"name": "model",
|
476 |
+
"type": "COGVIDEOMODEL",
|
477 |
+
"links": [
|
478 |
+
144
|
479 |
+
]
|
480 |
+
},
|
481 |
+
{
|
482 |
+
"name": "vae",
|
483 |
+
"type": "VAE",
|
484 |
+
"links": [
|
485 |
+
132,
|
486 |
+
141
|
487 |
+
],
|
488 |
+
"slot_index": 1
|
489 |
+
}
|
490 |
+
],
|
491 |
+
"properties": {
|
492 |
+
"Node name for S&R": "DownloadAndLoadCogVideoModel"
|
493 |
+
},
|
494 |
+
"widgets_values": [
|
495 |
+
"kijai/CogVideoX-5b-1.5-I2V",
|
496 |
+
"bf16",
|
497 |
+
"disabled",
|
498 |
+
false,
|
499 |
+
"sdpa",
|
500 |
+
"main_device"
|
501 |
+
]
|
502 |
+
},
|
503 |
+
{
|
504 |
+
"id": 44,
|
505 |
+
"type": "VHS_VideoCombine",
|
506 |
+
"pos": {
|
507 |
+
"0": 1884,
|
508 |
+
"1": -6
|
509 |
+
},
|
510 |
+
"size": [
|
511 |
+
605.3909912109375,
|
512 |
+
310
|
513 |
+
],
|
514 |
+
"flags": {},
|
515 |
+
"order": 9,
|
516 |
+
"mode": 0,
|
517 |
+
"inputs": [
|
518 |
+
{
|
519 |
+
"name": "images",
|
520 |
+
"type": "IMAGE",
|
521 |
+
"link": 134
|
522 |
+
},
|
523 |
+
{
|
524 |
+
"name": "audio",
|
525 |
+
"type": "AUDIO",
|
526 |
+
"link": null,
|
527 |
+
"shape": 7
|
528 |
+
},
|
529 |
+
{
|
530 |
+
"name": "meta_batch",
|
531 |
+
"type": "VHS_BatchManager",
|
532 |
+
"link": null,
|
533 |
+
"shape": 7
|
534 |
+
},
|
535 |
+
{
|
536 |
+
"name": "vae",
|
537 |
+
"type": "VAE",
|
538 |
+
"link": null,
|
539 |
+
"shape": 7
|
540 |
+
}
|
541 |
+
],
|
542 |
+
"outputs": [
|
543 |
+
{
|
544 |
+
"name": "Filenames",
|
545 |
+
"type": "VHS_FILENAMES",
|
546 |
+
"links": null,
|
547 |
+
"shape": 3
|
548 |
+
}
|
549 |
+
],
|
550 |
+
"properties": {
|
551 |
+
"Node name for S&R": "VHS_VideoCombine"
|
552 |
+
},
|
553 |
+
"widgets_values": {
|
554 |
+
"frame_rate": 16,
|
555 |
+
"loop_count": 0,
|
556 |
+
"filename_prefix": "CogVideoX_1_5_I2V",
|
557 |
+
"format": "video/h264-mp4",
|
558 |
+
"pix_fmt": "yuv420p",
|
559 |
+
"crf": 19,
|
560 |
+
"save_metadata": true,
|
561 |
+
"pingpong": false,
|
562 |
+
"save_output": true,
|
563 |
+
"videopreview": {
|
564 |
+
"hidden": false,
|
565 |
+
"paused": false,
|
566 |
+
"params": {
|
567 |
+
"filename": "CogVideoX-I2V_00004.mp4",
|
568 |
+
"subfolder": "",
|
569 |
+
"type": "temp",
|
570 |
+
"format": "video/h264-mp4",
|
571 |
+
"frame_rate": 8
|
572 |
+
},
|
573 |
+
"muted": false
|
574 |
+
}
|
575 |
+
}
|
576 |
+
}
|
577 |
+
],
|
578 |
+
"links": [
|
579 |
+
[
|
580 |
+
54,
|
581 |
+
20,
|
582 |
+
0,
|
583 |
+
30,
|
584 |
+
0,
|
585 |
+
"CLIP"
|
586 |
+
],
|
587 |
+
[
|
588 |
+
71,
|
589 |
+
36,
|
590 |
+
0,
|
591 |
+
37,
|
592 |
+
0,
|
593 |
+
"IMAGE"
|
594 |
+
],
|
595 |
+
[
|
596 |
+
132,
|
597 |
+
59,
|
598 |
+
1,
|
599 |
+
60,
|
600 |
+
0,
|
601 |
+
"VAE"
|
602 |
+
],
|
603 |
+
[
|
604 |
+
134,
|
605 |
+
60,
|
606 |
+
0,
|
607 |
+
44,
|
608 |
+
0,
|
609 |
+
"IMAGE"
|
610 |
+
],
|
611 |
+
[
|
612 |
+
141,
|
613 |
+
59,
|
614 |
+
1,
|
615 |
+
62,
|
616 |
+
0,
|
617 |
+
"VAE"
|
618 |
+
],
|
619 |
+
[
|
620 |
+
142,
|
621 |
+
37,
|
622 |
+
0,
|
623 |
+
62,
|
624 |
+
1,
|
625 |
+
"IMAGE"
|
626 |
+
],
|
627 |
+
[
|
628 |
+
144,
|
629 |
+
59,
|
630 |
+
0,
|
631 |
+
63,
|
632 |
+
0,
|
633 |
+
"COGVIDEOMODEL"
|
634 |
+
],
|
635 |
+
[
|
636 |
+
145,
|
637 |
+
30,
|
638 |
+
0,
|
639 |
+
63,
|
640 |
+
1,
|
641 |
+
"CONDITIONING"
|
642 |
+
],
|
643 |
+
[
|
644 |
+
146,
|
645 |
+
31,
|
646 |
+
0,
|
647 |
+
63,
|
648 |
+
2,
|
649 |
+
"CONDITIONING"
|
650 |
+
],
|
651 |
+
[
|
652 |
+
147,
|
653 |
+
62,
|
654 |
+
0,
|
655 |
+
63,
|
656 |
+
4,
|
657 |
+
"LATENT"
|
658 |
+
],
|
659 |
+
[
|
660 |
+
148,
|
661 |
+
63,
|
662 |
+
0,
|
663 |
+
60,
|
664 |
+
1,
|
665 |
+
"LATENT"
|
666 |
+
],
|
667 |
+
[
|
668 |
+
149,
|
669 |
+
30,
|
670 |
+
1,
|
671 |
+
31,
|
672 |
+
0,
|
673 |
+
"CLIP"
|
674 |
+
]
|
675 |
+
],
|
676 |
+
"groups": [],
|
677 |
+
"config": {},
|
678 |
+
"extra": {
|
679 |
+
"ds": {
|
680 |
+
"scale": 0.7627768444387097,
|
681 |
+
"offset": [
|
682 |
+
716.7143770104391,
|
683 |
+
291.75859557289965
|
684 |
+
]
|
685 |
+
}
|
686 |
+
},
|
687 |
+
"version": 0.4
|
688 |
+
}
|