WSCL / utils /convcrf /convcrf.py
yhzhai's picture
release code
482ab8a
raw
history blame
No virus
19.3 kB
"""
The MIT License (MIT)
Copyright (c) 2017 Marvin Teichmann
"""
from __future__ import absolute_import, division, print_function
import logging
import math
import os
import sys
import warnings
import numpy as np
import scipy as scp
logging.basicConfig(
format="%(asctime)s %(levelname)s %(message)s",
level=logging.INFO,
stream=sys.stdout,
)
try:
import pyinn as P
has_pyinn = True
except ImportError:
# PyInn is required to use our cuda based message-passing implementation
# Torch 0.4 provides a im2col operation, which will be used instead.
# It is ~15% slower.
has_pyinn = False
pass
import gc
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.autograd import Variable
from torch.nn import functional as nnfun
from torch.nn.parameter import Parameter
# Default config as proposed by Philipp Kraehenbuehl and Vladlen Koltun,
default_conf = {
"filter_size": 11,
"blur": 4,
"merge": True,
"norm": "none",
"weight": "vector",
"unary_weight": 1,
"weight_init": 0.2,
"trainable": False,
"convcomp": False,
"logsoftmax": True, # use logsoftmax for numerical stability
"softmax": True,
"skip_init_softmax": False,
"final_softmax": False,
"pos_feats": {
"sdims": 3,
"compat": 3,
},
"col_feats": {
"sdims": 80,
"schan": 13, # schan depend on the input scale.
# use schan = 13 for images in [0, 255]
# for normalized images in [-0.5, 0.5] try schan = 0.1
"compat": 10,
"use_bias": False,
},
"trainable_bias": False,
"pyinn": False,
}
# Config used for test cases on 10 x 10 pixel greyscale inpu
test_config = {
"filter_size": 5,
"blur": 1,
"merge": False,
"norm": "sym",
"trainable": False,
"weight": "scalar",
"unary_weight": 1,
"weight_init": 0.5,
"convcomp": False,
"trainable": False,
"convcomp": False,
"logsoftmax": True, # use logsoftmax for numerical stability
"softmax": True,
"pos_feats": {
"sdims": 1.5,
"compat": 3,
},
"col_feats": {"sdims": 2, "schan": 2, "compat": 3, "use_bias": True},
"trainable_bias": False,
}
class GaussCRF(nn.Module):
"""Implements ConvCRF with hand-crafted features.
It uses the more generic ConvCRF class as basis and utilizes a config
dict to easily set hyperparameters and follows the design choices of:
Philipp Kraehenbuehl and Vladlen Koltun, "Efficient Inference in Fully
"Connected CRFs with Gaussian Edge Pots" (arxiv.org/abs/1210.5644)
"""
def __init__(self, conf, shape, nclasses=None, use_gpu=True):
super(GaussCRF, self).__init__()
self.conf = conf
self.shape = shape
self.nclasses = nclasses
self.trainable = conf["trainable"]
if not conf["trainable_bias"]:
self.register_buffer("mesh", self._create_mesh())
else:
self.register_parameter("mesh", Parameter(self._create_mesh()))
if self.trainable:
def register(name, tensor):
self.register_parameter(name, Parameter(tensor))
else:
def register(name, tensor):
self.register_buffer(name, Variable(tensor))
register("pos_sdims", torch.Tensor([1 / conf["pos_feats"]["sdims"]]))
if conf["col_feats"]["use_bias"]:
register("col_sdims", torch.Tensor([1 / conf["col_feats"]["sdims"]]))
else:
self.col_sdims = None
register("col_schan", torch.Tensor([1 / conf["col_feats"]["schan"]]))
register("col_compat", torch.Tensor([conf["col_feats"]["compat"]]))
register("pos_compat", torch.Tensor([conf["pos_feats"]["compat"]]))
if conf["weight"] is None:
weight = None
elif conf["weight"] == "scalar":
val = conf["weight_init"]
weight = torch.Tensor([val])
elif conf["weight"] == "vector":
val = conf["weight_init"]
weight = val * torch.ones(1, nclasses, 1, 1)
self.CRF = ConvCRF(
shape,
nclasses,
mode="col",
conf=conf,
use_gpu=use_gpu,
filter_size=conf["filter_size"],
norm=conf["norm"],
blur=conf["blur"],
trainable=conf["trainable"],
convcomp=conf["convcomp"],
weight=weight,
final_softmax=conf["final_softmax"],
unary_weight=conf["unary_weight"],
pyinn=conf["pyinn"],
)
return
def forward(self, unary, img, num_iter=5):
"""Run a forward pass through ConvCRF.
Arguments:
unary: torch.Tensor with shape [bs, num_classes, height, width].
The unary predictions. Logsoftmax is applied to the unaries
during inference. When using CNNs don't apply softmax,
use unnormalized output (logits) instead.
img: torch.Tensor with shape [bs, 3, height, width]
The input image. Default config assumes image
data in [0, 255]. For normalized images adapt
`schan`. Try schan = 0.1 for images in [-0.5, 0.5]
"""
conf = self.conf
bs, c, x, y = img.shape
pos_feats = self.create_position_feats(sdims=self.pos_sdims, bs=bs)
col_feats = self.create_colour_feats(
img,
sdims=self.col_sdims,
schan=self.col_schan,
bias=conf["col_feats"]["use_bias"],
bs=bs,
)
compats = [self.pos_compat, self.col_compat]
self.CRF.add_pairwise_energies([pos_feats, col_feats], compats, conf["merge"])
prediction = self.CRF.inference(unary, num_iter=num_iter)
self.CRF.clean_filters()
return prediction
def _create_mesh(self, requires_grad=False):
hcord_range = [range(s) for s in self.shape]
mesh = np.array(np.meshgrid(*hcord_range, indexing="ij"), dtype=np.float32)
return torch.from_numpy(mesh)
def create_colour_feats(self, img, schan, sdims=0.0, bias=True, bs=1):
norm_img = img * schan
if bias:
norm_mesh = self.create_position_feats(sdims=sdims, bs=bs)
feats = torch.cat([norm_mesh, norm_img], dim=1)
else:
feats = norm_img
return feats
def create_position_feats(self, sdims, bs=1):
if type(self.mesh) is Parameter:
return torch.stack(bs * [self.mesh * sdims])
else:
return torch.stack(bs * [Variable(self.mesh) * sdims])
def show_memusage(device=0, name=""):
import gpustat
gc.collect()
gpu_stats = gpustat.GPUStatCollection.new_query()
item = gpu_stats.jsonify()["gpus"][device]
logging.info(
"{:>5}/{:>5} MB Usage at {}".format(
item["memory.used"], item["memory.total"], name
)
)
def exp_and_normalize(features, dim=0):
"""
Aka "softmax" in deep learning literature
"""
normalized = torch.nn.functional.softmax(features, dim=dim)
return normalized
def _get_ind(dz):
if dz == 0:
return 0, 0
if dz < 0:
return 0, -dz
if dz > 0:
return dz, 0
def _negative(dz):
"""
Computes -dz for numpy indexing. Goal is to use as in array[i:-dz].
However, if dz=0 this indexing does not work.
None needs to be used instead.
"""
if dz == 0:
return None
else:
return -dz
class MessagePassingCol:
"""Perform the Message passing of ConvCRFs.
The main magic happens here.
"""
def __init__(
self,
feat_list,
compat_list,
merge,
npixels,
nclasses,
norm="sym",
filter_size=5,
clip_edges=0,
use_gpu=False,
blur=1,
matmul=False,
verbose=False,
pyinn=False,
):
if not norm == "sym" and not norm == "none":
raise NotImplementedError
span = filter_size // 2
assert filter_size % 2 == 1
self.span = span
self.filter_size = filter_size
self.use_gpu = use_gpu
self.verbose = verbose
self.blur = blur
self.pyinn = pyinn
self.merge = merge
self.npixels = npixels
if not self.blur == 1 and self.blur % 2:
raise NotImplementedError
self.matmul = matmul
self._gaus_list = []
self._norm_list = []
for feats, compat in zip(feat_list, compat_list):
gaussian = self._create_convolutional_filters(feats)
if not norm == "none":
mynorm = self._get_norm(gaussian)
self._norm_list.append(mynorm)
else:
self._norm_list.append(None)
gaussian = compat * gaussian
self._gaus_list.append(gaussian)
if merge:
self.gaussian = sum(self._gaus_list)
if not norm == "none":
raise NotImplementedError
def _get_norm(self, gaus):
norm_tensor = torch.ones([1, 1, self.npixels[0], self.npixels[1]])
normalization_feats = torch.autograd.Variable(norm_tensor)
if self.use_gpu:
normalization_feats = normalization_feats.cuda()
norm_out = self._compute_gaussian(normalization_feats, gaussian=gaus)
return 1 / torch.sqrt(norm_out + 1e-20)
def _create_convolutional_filters(self, features):
span = self.span
bs = features.shape[0]
if self.blur > 1:
off_0 = (self.blur - self.npixels[0] % self.blur) % self.blur
off_1 = (self.blur - self.npixels[1] % self.blur) % self.blur
pad_0 = math.ceil(off_0 / 2)
pad_1 = math.ceil(off_1 / 2)
if self.blur == 2:
assert pad_0 == self.npixels[0] % 2
assert pad_1 == self.npixels[1] % 2
features = torch.nn.functional.avg_pool2d(
features,
kernel_size=self.blur,
padding=(pad_0, pad_1),
count_include_pad=False,
)
npixels = [
math.ceil(self.npixels[0] / self.blur),
math.ceil(self.npixels[1] / self.blur),
]
assert npixels[0] == features.shape[2]
assert npixels[1] == features.shape[3]
else:
npixels = self.npixels
gaussian_tensor = features.data.new(
bs, self.filter_size, self.filter_size, npixels[0], npixels[1]
).fill_(0)
gaussian = Variable(gaussian_tensor)
for dx in range(-span, span + 1):
for dy in range(-span, span + 1):
dx1, dx2 = _get_ind(dx)
dy1, dy2 = _get_ind(dy)
feat_t = features[:, :, dx1 : _negative(dx2), dy1 : _negative(dy2)]
feat_t2 = features[
:, :, dx2 : _negative(dx1), dy2 : _negative(dy1)
] # NOQA
diff = feat_t - feat_t2
diff_sq = diff * diff
exp_diff = torch.exp(torch.sum(-0.5 * diff_sq, dim=1))
gaussian[
:, dx + span, dy + span, dx2 : _negative(dx1), dy2 : _negative(dy1)
] = exp_diff
return gaussian.view(
bs, 1, self.filter_size, self.filter_size, npixels[0], npixels[1]
)
def compute(self, input):
if self.merge:
pred = self._compute_gaussian(input, self.gaussian)
else:
assert len(self._gaus_list) == len(self._norm_list)
pred = 0
for gaus, norm in zip(self._gaus_list, self._norm_list):
pred += self._compute_gaussian(input, gaus, norm)
return pred
def _compute_gaussian(self, input, gaussian, norm=None):
if norm is not None:
input = input * norm
shape = input.shape
num_channels = shape[1]
bs = shape[0]
if self.blur > 1:
off_0 = (self.blur - self.npixels[0] % self.blur) % self.blur
off_1 = (self.blur - self.npixels[1] % self.blur) % self.blur
pad_0 = int(math.ceil(off_0 / 2))
pad_1 = int(math.ceil(off_1 / 2))
input = torch.nn.functional.avg_pool2d(
input,
kernel_size=self.blur,
padding=(pad_0, pad_1),
count_include_pad=False,
)
npixels = [
math.ceil(self.npixels[0] / self.blur),
math.ceil(self.npixels[1] / self.blur),
]
assert npixels[0] == input.shape[2]
assert npixels[1] == input.shape[3]
else:
npixels = self.npixels
if self.verbose:
show_memusage(name="Init")
if self.pyinn:
input_col = P.im2col(input, self.filter_size, 1, self.span)
else:
# An alternative implementation of num2col.
#
# This has implementation uses the torch 0.4 im2col operation.
# This implementation was not avaible when we did the experiments
# published in our paper. So less "testing" has been done.
#
# It is around ~20% slower then the pyinn implementation but
# easier to use as it removes a dependency.
input_unfold = F.unfold(input, self.filter_size, 1, self.span)
input_unfold = input_unfold.view(
bs,
num_channels,
self.filter_size,
self.filter_size,
npixels[0],
npixels[1],
)
input_col = input_unfold
k_sqr = self.filter_size * self.filter_size
if self.verbose:
show_memusage(name="Im2Col")
product = gaussian * input_col
if self.verbose:
show_memusage(name="Product")
product = product.view([bs, num_channels, k_sqr, npixels[0], npixels[1]])
message = product.sum(2)
if self.verbose:
show_memusage(name="FinalNorm")
if self.blur > 1:
in_0 = self.npixels[0]
in_1 = self.npixels[1]
message = message.view(bs, num_channels, npixels[0], npixels[1])
with warnings.catch_warnings():
warnings.simplefilter("ignore")
# Suppress warning regarding corner alignment
message = torch.nn.functional.upsample(
message, scale_factor=self.blur, mode="bilinear"
)
message = message[:, :, pad_0 : pad_0 + in_0, pad_1 : in_1 + pad_1]
message = message.contiguous()
message = message.view(shape)
assert message.shape == shape
if norm is not None:
message = norm * message
return message
class ConvCRF(nn.Module):
"""
Implements a generic CRF class.
This class provides tools to build
your own ConvCRF based model.
"""
def __init__(
self,
npixels,
nclasses,
conf,
mode="conv",
filter_size=5,
clip_edges=0,
blur=1,
use_gpu=False,
norm="sym",
merge=False,
verbose=False,
trainable=False,
convcomp=False,
weight=None,
final_softmax=True,
unary_weight=10,
pyinn=False,
skip_init_softmax=False,
eps=1e-8,
):
super(ConvCRF, self).__init__()
self.nclasses = nclasses
self.filter_size = filter_size
self.clip_edges = clip_edges
self.use_gpu = use_gpu
self.mode = mode
self.norm = norm
self.merge = merge
self.kernel = None
self.verbose = verbose
self.blur = blur
self.final_softmax = final_softmax
self.pyinn = pyinn
self.skip_init_softmax = skip_init_softmax
self.eps = eps
self.conf = conf
self.unary_weight = unary_weight
if self.use_gpu:
if not torch.cuda.is_available():
logging.error("GPU mode requested but not avaible.")
logging.error("Please run using use_gpu=False.")
raise ValueError
self.npixels = npixels
if type(npixels) is tuple or type(npixels) is list:
self.height = npixels[0]
self.width = npixels[1]
else:
self.npixels = npixels
if trainable:
def register(name, tensor):
self.register_parameter(name, Parameter(tensor))
else:
def register(name, tensor):
self.register_buffer(name, Variable(tensor))
if weight is None:
self.weight = None
else:
register("weight", weight)
if convcomp:
self.comp = nn.Conv2d(
nclasses, nclasses, kernel_size=1, stride=1, padding=0, bias=False
)
self.comp.weight.data.fill_(0.1 * math.sqrt(2.0 / nclasses))
else:
self.comp = None
def clean_filters(self):
self.kernel = None
def add_pairwise_energies(self, feat_list, compat_list, merge):
assert len(feat_list) == len(compat_list)
self.kernel = MessagePassingCol(
feat_list=feat_list,
compat_list=compat_list,
merge=merge,
npixels=self.npixels,
filter_size=self.filter_size,
nclasses=self.nclasses,
use_gpu=self.use_gpu,
norm=self.norm,
verbose=self.verbose,
blur=self.blur,
pyinn=self.pyinn,
)
def inference(self, unary, num_iter=5):
if not self.skip_init_softmax:
if not self.conf["logsoftmax"]:
lg_unary = torch.log(unary)
prediction = exp_and_normalize(lg_unary, dim=1)
else:
lg_unary = nnfun.log_softmax(unary, dim=1, _stacklevel=5)
prediction = lg_unary
else:
unary = unary + self.eps
unary = unary.clamp(0, 1)
lg_unary = torch.log(unary)
prediction = lg_unary
for i in range(num_iter):
message = self.kernel.compute(prediction)
if self.comp is not None:
# message_r = message.view(tuple([1]) + message.shape)
comp = self.comp(message)
message = message + comp
if self.weight is None:
prediction = lg_unary + message
else:
prediction = (
self.unary_weight - self.weight
) * lg_unary + self.weight * message
if not i == num_iter - 1 or self.final_softmax:
if self.conf["softmax"]:
prediction = exp_and_normalize(prediction, dim=1)
return prediction
def start_inference(self):
pass
def step_inference(self):
pass
def get_test_conf():
return test_config.copy()
def get_default_conf():
return default_conf.copy()