|
import torch |
|
import torch.nn as nn |
|
|
|
|
|
def get_map_mask_loss(opt): |
|
return MapMaskLoss() |
|
|
|
|
|
class MapMaskLoss(nn.Module): |
|
def __init__(self): |
|
super().__init__() |
|
|
|
self.bce_loss = nn.BCELoss(reduction="mean") |
|
|
|
def forward(self, out_map, mask): |
|
mask_size = mask.shape[-2:] |
|
if out_map.shape[-2:] != mask_size: |
|
out_map = nn.functional.interpolate( |
|
out_map, size=mask_size, mode="bilinear", align_corners=False |
|
) |
|
loss = self.bce_loss(out_map, mask) |
|
return {"loss": loss} |
|
|
|
|
|
if __name__ == "__main__": |
|
map_mask_loss = MapMaskLoss() |
|
|