Spaces:
Sleeping
Sleeping
Add application file
Browse files- app.py +78 -0
- model.pt +3 -0
- requirements.txt +5 -0
app.py
ADDED
@@ -0,0 +1,78 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
|
3 |
+
import pandas as pd
|
4 |
+
import streamlit as st
|
5 |
+
import torch.nn as nn
|
6 |
+
from transformers import RobertaTokenizer, RobertaModel, PretrainedConfig
|
7 |
+
|
8 |
+
|
9 |
+
@st.cache_resource
|
10 |
+
def init_model():
|
11 |
+
model = RobertaModel(config=PretrainedConfig().from_pretrained("roberta-large-mnli"))
|
12 |
+
|
13 |
+
model.pooler = nn.Sequential(
|
14 |
+
nn.Linear(1024, 256),
|
15 |
+
nn.LayerNorm(256),
|
16 |
+
nn.ReLU(),
|
17 |
+
nn.Linear(256, 8),
|
18 |
+
nn.Sigmoid()
|
19 |
+
)
|
20 |
+
|
21 |
+
model_path = "model.pt"
|
22 |
+
model.load_state_dict(torch.load(model_path, map_location=torch.device("cpu")))
|
23 |
+
model.eval()
|
24 |
+
return model
|
25 |
+
|
26 |
+
cats = ["Computer Science", "Economics", "Electrical Engineering",
|
27 |
+
"Mathematics", "Physics", "Biology", "Finance", "Statistics"]
|
28 |
+
|
29 |
+
def predict(outputs):
|
30 |
+
top = 0
|
31 |
+
temp = 100000
|
32 |
+
apr_probs = torch.nn.functional.softmax(torch.tensor([39253., 84., 220., 2263., 1214., 909., 66., 10661.]) / temp, dim=0)
|
33 |
+
probs = nn.functional.softmax(outputs / apr_probs, dim=1).tolist()[0]
|
34 |
+
|
35 |
+
top_cats = []
|
36 |
+
top_probs = []
|
37 |
+
|
38 |
+
first = True
|
39 |
+
write_cs = False
|
40 |
+
for prob, cat in sorted(zip(probs, cats), reverse=True):
|
41 |
+
if first:
|
42 |
+
if cat == "Computer Science":
|
43 |
+
write_cs = True
|
44 |
+
first = False
|
45 |
+
if top < 95:
|
46 |
+
percent = prob * 100
|
47 |
+
top += percent
|
48 |
+
top_cats.append(cat)
|
49 |
+
top_probs.append(str(round(percent, 1)))
|
50 |
+
res = pd.DataFrame(top_probs, index=top_cats, columns=['Percent'])
|
51 |
+
st.write(res)
|
52 |
+
if write_cs:
|
53 |
+
st.write("Today everything is connected with Computer Science")
|
54 |
+
|
55 |
+
tokenizer = RobertaTokenizer.from_pretrained("roberta-large-mnli")
|
56 |
+
model = init_model()
|
57 |
+
|
58 |
+
st.title("Article classifier")
|
59 |
+
st.markdown("### Title")
|
60 |
+
|
61 |
+
title = st.text_input("*Enter title (required)")
|
62 |
+
|
63 |
+
st.markdown("### Abstract")
|
64 |
+
|
65 |
+
abstract = st.text_area(" Enter abstract", height=200)
|
66 |
+
|
67 |
+
if not title:
|
68 |
+
st.warning("Please fill in required fields")
|
69 |
+
else:
|
70 |
+
try:
|
71 |
+
st.markdown("### Result")
|
72 |
+
encoded_input = tokenizer(title + ". " + abstract, return_tensors="pt", padding=True,
|
73 |
+
max_length=1024, truncation=True)
|
74 |
+
with torch.no_grad():
|
75 |
+
outputs = model(**encoded_input).pooler_output[:, 0, :]
|
76 |
+
predict(outputs)
|
77 |
+
except Exception:
|
78 |
+
st.error("Something went wrong. Try different text")
|
model.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f9ce2a83d4d7f59e53ab917fb99ecaeb26f66a14c9f336b898f4924935af2140
|
3 |
+
size 1418460457
|
requirements.txt
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
altair==4.0
|
2 |
+
pandas
|
3 |
+
torch
|
4 |
+
tokenizers
|
5 |
+
transformers
|