nanee-convo / app.py
gauravyad87
Add updated Dockerfile and app.py
4ce7dc8
raw
history blame
7.79 kB
import os
import torch
import argparse
import gradio as gr
import openai
from zipfile import ZipFile
import requests
import se_extractor
from api import BaseSpeakerTTS, ToneColorConverter
import langid
import traceback
from dotenv import load_dotenv
# Load environment variables
load_dotenv()
# Function to download and extract checkpoints
def download_and_extract_checkpoints():
zip_url = "https://huggingface.co/camenduru/OpenVoice/resolve/main/checkpoints_1226.zip"
zip_path = "checkpoints.zip"
if not os.path.exists("checkpoints"):
print("Downloading checkpoints...")
response = requests.get(zip_url, stream=True)
with open(zip_path, "wb") as zip_file:
for chunk in response.iter_content(chunk_size=8192):
if chunk:
zip_file.write(chunk)
print("Extracting checkpoints...")
with ZipFile(zip_path, "r") as zip_ref:
zip_ref.extractall(".")
os.remove(zip_path)
print("Checkpoints are ready.")
# Call the function to ensure checkpoints are available
download_and_extract_checkpoints()
# Initialize OpenAI API key
openai.api_key = os.getenv("OPENAI_API_KEY")
if not openai.api_key:
raise ValueError("Please set the OPENAI_API_KEY environment variable.")
parser = argparse.ArgumentParser()
parser.add_argument("--share", action='store_true', default=False, help="make link public")
args = parser.parse_args()
# Define paths to checkpoints
en_ckpt_base = 'checkpoints/base_speakers/EN'
zh_ckpt_base = 'checkpoints/base_speakers/ZH'
ckpt_converter = 'checkpoints/converter'
device = 'cuda' if torch.cuda.is_available() else 'cpu'
output_dir = 'outputs'
os.makedirs(output_dir, exist_ok=True)
# Load TTS models
en_base_speaker_tts = BaseSpeakerTTS(f'{en_ckpt_base}/config.json', device=device)
en_base_speaker_tts.load_ckpt(f'{en_ckpt_base}/checkpoint.pth')
zh_base_speaker_tts = BaseSpeakerTTS(f'{zh_ckpt_base}/config.json', device=device)
zh_base_speaker_tts.load_ckpt(f'{zh_ckpt_base}/checkpoint.pth')
tone_color_converter = ToneColorConverter(f'{ckpt_converter}/config.json', device=device)
tone_color_converter.load_ckpt(f'{ckpt_converter}/checkpoint.pth')
# Load speaker embeddings
en_source_default_se = torch.load(f'{en_ckpt_base}/en_default_se.pth').to(device)
en_source_style_se = torch.load(f'{en_ckpt_base}/en_style_se.pth').to(device)
zh_source_se = torch.load(f'{zh_ckpt_base}/zh_default_se.pth').to(device)
# Extract speaker embedding from the default Mickey Mouse audio
default_speaker_audio = "resources/output.wav"
try:
target_se, _ = se_extractor.get_se(
default_speaker_audio,
tone_color_converter,
target_dir='processed',
vad=True
)
print("Speaker embedding extracted successfully.")
except Exception as e:
raise RuntimeError(f"Failed to extract speaker embedding from {default_speaker_audio}: {str(e)}")
# Supported languages
supported_languages = ['zh', 'en']
def predict(audio_file_pth, agree):
text_hint = ''
synthesized_audio_path = None
# Agree with the terms
if not agree:
text_hint += '[ERROR] Please accept the Terms & Conditions!\n'
return (text_hint, None)
# Check if audio file is provided
if audio_file_pth is not None:
speaker_wav = audio_file_pth
else:
text_hint += "[ERROR] Please record your voice using the Microphone.\n"
return (text_hint, None)
# Transcribe audio to text using OpenAI Whisper
try:
with open(speaker_wav, 'rb') as audio_file:
transcription_response = openai.Audio.transcribe(
model="whisper-1",
file=audio_file,
response_format='text'
)
input_text = transcription_response.strip()
print(f"Transcribed Text: {input_text}")
except Exception as e:
text_hint += f"[ERROR] Transcription failed: {str(e)}\n"
return (text_hint, None)
if len(input_text) == 0:
text_hint += "[ERROR] No speech detected in the audio.\n"
return (text_hint, None)
# Detect language
language_predicted = langid.classify(input_text)[0].strip()
print(f"Detected language: {language_predicted}")
if language_predicted not in supported_languages:
text_hint += f"[ERROR] The detected language '{language_predicted}' is not supported. Supported languages are: {supported_languages}\n"
return (text_hint, None)
# Select TTS model based on language
if language_predicted == "zh":
tts_model = zh_base_speaker_tts
language = 'Chinese'
speaker_style = 'default'
else:
tts_model = en_base_speaker_tts
language = 'English'
speaker_style = 'default'
# Generate response using OpenAI GPT-4
try:
response = openai.ChatCompletion.create(
model="gpt-4o-mini",
messages=[
{"role": "system", "content": "You are Mickey Mouse, a friendly and cheerful character who responds to children's queries in a simple and engaging manner. Please keep your response up to 200 characters."},
{"role": "user", "content": input_text}
],
max_tokens=200,
temperature=0.7,
)
reply_text = response['choices'][0]['message']['content'].strip()
print(f"GPT-4 Reply: {reply_text}")
except Exception as e:
text_hint += f"[ERROR] Failed to get response from OpenAI GPT-4: {str(e)}\n"
return (text_hint, None)
# Synthesize reply text to audio
try:
src_path = os.path.join(output_dir, 'tmp_reply.wav')
tts_model.tts(reply_text, src_path, speaker=speaker_style, language=language)
print(f"Audio synthesized and saved to {src_path}")
save_path = os.path.join(output_dir, 'output_reply.wav')
tone_color_converter.convert(
audio_src_path=src_path,
src_se=en_source_default_se if language == 'English' else zh_source_se,
tgt_se=target_se,
output_path=save_path,
message="@MickeyMouse"
)
print(f"Tone color conversion completed and saved to {save_path}")
text_hint += "Response generated successfully.\n"
synthesized_audio_path = save_path
except Exception as e:
text_hint += f"[ERROR] Failed to synthesize audio: {str(e)}\n"
traceback.print_exc()
return (text_hint, None)
return (text_hint, synthesized_audio_path)
with gr.Blocks(analytics_enabled=False) as demo:
gr.Markdown("# Mickey Mouse Voice Assistant")
with gr.Row():
with gr.Column():
audio_input = gr.Audio(
source="microphone",
type="filepath",
label="Record Your Voice",
info="Click the microphone button to record your voice."
)
tos_checkbox = gr.Checkbox(
label="Agree to Terms & Conditions",
value=False,
info="I agree to the terms of service."
)
submit_button = gr.Button("Send")
with gr.Column():
info_output = gr.Textbox(
label="Info",
interactive=False,
lines=4,
)
audio_output = gr.Audio(
label="Mickey's Response",
interactive=False,
autoplay=True,
)
submit_button.click(
predict,
inputs=[audio_input, tos_checkbox],
outputs=[info_output, audio_output]
)
# Launch the Gradio app
demo.queue()
demo.launch(
server_name="0.0.0.0",
server_port=int(os.environ.get("PORT", 8080)),
debug=True,
show_api=True,
share=False
)