TinyLanguageRobots / tiny_ur5.py
yfzhoucs's picture
Added files for app
1902a6e
"""
@author: Olivier Sigaud
A merge between two sources:
* Adaptation of the MountainCar Environment from the "FAReinforcement" library
of Jose Antonio Martin H. (version 1.0), adapted by 'Tom Schaul, tom@idsia.ch'
and then modified by Arnaud de Broissia
* the gym MountainCar environment
itself from
http://incompleteideas.net/sutton/MountainCar/MountainCar1.cp
permalink: https://perma.cc/6Z2N-PFWC
"""
# apple: https://unsplash.com/images/food/apple
# orange: https://unsplash.com/s/photos/orange
# wood: https://architextures.org/textures/category/wood
import math
from typing import Optional
import numpy as np
import gym
from gym import spaces
# from gym.envs.classic_control import utils
from gym.error import DependencyNotInstalled
# from gym.utils.renderer import Renderer
import pygame
import scipy
import yaml
from collections import OrderedDict
import copy
class TinyUR5Env(gym.Env):
"""
### Description
The Mountain Car MDP is a deterministic MDP that consists of a car placed stochastically
at the bottom of a sinusoidal valley, with the only possible actions being the accelerations
that can be applied to the car in either direction. The goal of the MDP is to strategically
accelerate the car to reach the goal state on top of the right hill. There are two versions
of the mountain car domain in gym: one with discrete actions and one with continuous.
This version is the one with continuous actions.
This MDP first appeared in [Andrew Moore's PhD Thesis (1990)](https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-209.pdf)
```
@TECHREPORT{Moore90efficientmemory-based,
author = {Andrew William Moore},
title = {Efficient Memory-based Learning for Robot Control},
institution = {University of Cambridge},
year = {1990}
}
```
### Observation Space
The observation is a `ndarray` with shape `(2,)` where the elements correspond to the following:
| Num | Observation | Min | Max | Unit |
|-----|--------------------------------------|------|-----|--------------|
| 0 | position of the car along the x-axis | -Inf | Inf | position (m) |
| 1 | velocity of the car | -Inf | Inf | position (m) |
### Action Space
The action is a `ndarray` with shape `(1,)`, representing the directional force applied on the car.
The action is clipped in the range `[-1,1]` and multiplied by a power of 0.0015.
### Transition Dynamics:
Given an action, the mountain car follows the following transition dynamics:
*velocity<sub>t+1</sub> = velocity<sub>t+1</sub> + force * self.power - 0.0025 * cos(3 * position<sub>t</sub>)*
*position<sub>t+1</sub> = position<sub>t</sub> + velocity<sub>t+1</sub>*
where force is the action clipped to the range `[-1,1]` and power is a constant 0.0015.
The collisions at either end are inelastic with the velocity set to 0 upon collision with the wall.
The position is clipped to the range [-1.2, 0.6] and velocity is clipped to the range [-0.07, 0.07].
### Reward
A negative reward of *-0.1 * action<sup>2</sup>* is received at each timestep to penalise for
taking actions of large magnitude. If the mountain car reaches the goal then a positive reward of +100
is added to the negative reward for that timestep.
### Starting State
The position of the car is assigned a uniform random value in `[-0.6 , -0.4]`.
The starting velocity of the car is always assigned to 0.
### Episode End
The episode ends if either of the following happens:
1. Termination: The position of the car is greater than or equal to 0.45 (the goal position on top of the right hill)
2. Truncation: The length of the episode is 999.
### Arguments
```
gym.make('MountainCarContinuous-v0')
```
### Version History
* v0: Initial versions release (1.0.0)
"""
metadata = {
"render_modes": ["human", "rgb_array", "single_rgb_array"],
"render_fps": 30,
}
# def __init__(self, yaml_file='config.yaml', render_mode: Optional[str] = None, goal_velocity=0, initializer=None):
def __init__(self, config, render_mode: Optional[str] = None, goal_velocity=0):
# with open(yaml_file, "r") as stream:
# try:
# config = yaml.safe_load(stream)
# # print(config, type(config))
# except yaml.YAMLError as exc:
# print(exc)
# # exit()
# if initializer is not None:
# config = initializer.initialize
self.config = config
self.min_action = -np.pi * 2 - 0.01
self.max_action = np.pi * 2 + 0.01
self.min_position = -1.2
self.max_position = 0.6
self.max_speed = 0.07
self.goal_position = (
0.45 # was 0.5 in gym, 0.45 in Arnaud de Broissia's version
)
self.goal_velocity = goal_velocity
self.power = 0.0015
self.low_state = np.array(
[self.min_position, -self.max_speed], dtype=np.float32
)
self.high_state = np.array(
[self.max_position, self.max_speed], dtype=np.float32
)
self.render_mode = render_mode
# self.renderer = Renderer(self.render_mode, self._render)
self.scale = config['scale']
self.screen_width = int(config['desk_width'] * self.scale)
self.screen_height = int(config['desk_height'] * self.scale)
self.robot_base_xy = [config['robot']['base_x'] * self.scale, config['robot']['base_y'] * self.scale]
self.tool_center_point = config['robot']['tool_center_point_distance'] * self.scale
self.tool_img_mid_point = config['robot']['tool_img_mid_point'] * self.scale
self.screen = None
self.clock = None
self.isopen = True
self.action_space = spaces.Box(
low=self.min_action, high=self.max_action, shape=(4,), dtype=np.float32
)
self.observation_space = spaces.Box(
low=self.min_action, high=self.max_action, shape=(4,), dtype=np.float32
)
if 'init_joints' not in config:
self.robot_joints = np.zeros((4,), dtype=np.float32)
self.robot_joints[0] = -1.57
self.robot_joints[1] = 1.57
self.robot_joints[2] = 0
self.robot_joints_init = np.zeros((4,), dtype=np.float32)
self.robot_joints_init[0] = -1.57
self.robot_joints_init[1] = 1.57
self.robot_joints_init[2] = 0
else:
self.robot_joints = np.zeros((4,), dtype=np.float32)
for i in range(4):
self.robot_joints[i] = config['init_joints'][i]
self.robot_joints_init = copy.deepcopy(self.robot_joints)
self.lim_length = config['objects']['lim']['length'] * self.scale
self.Kp = 15
self.dt = 0.003
self.manip_objs = OrderedDict()
self.env_objs = {}
for obj in config['objects']:
# print(obj)
# print(config['objects'][obj])
obj_img = pygame.image.load(config['objects'][obj]['image'])
if 'position' not in config['objects'][obj]:
self.env_objs[obj] = {}
self.env_objs[obj]['size_xy'] = [config['objects'][obj]['size']['x'] * self.scale,
config['objects'][obj]['size']['y'] * self.scale]
self.env_objs[obj]['image'] = \
pygame.transform.smoothscale(
obj_img,
self.env_objs[obj]['size_xy'])
if 'position' in config['objects'][obj]:
self.manip_objs[obj] = {}
self.manip_objs[obj]['size_xy'] = [config['objects'][obj]['size']['x'] * self.scale,
config['objects'][obj]['size']['y'] * self.scale]
self.manip_objs[obj]['pos_xy'] = [config['objects'][obj]['position']['x'] * self.scale,
config['objects'][obj]['position']['y'] * self.scale]
self.manip_objs[obj]['pos_z'] = config['objects'][obj]['position']['z'] * self.scale
self.manip_objs[obj]['size_z'] = config['objects'][obj]['size']['z'] * self.scale
self.manip_objs[obj]['orientation'] = 0.
self.manip_objs[obj]['lru_score'] = 0
self.manip_objs[obj]['image'] = \
pygame.transform.smoothscale(
obj_img,
self.manip_objs[obj]['size_xy'])
# exit()
# print(self.manip_objs)
self.eef_z = 120 * self.scale
self.grab = None
self.grab_position = None
self.grab_position_z = None
self.grab_orientation = None
self.highest_lru_score = 0
def _eef_(self):
start_x = 0
start_y = 0
end_x = self.robot_base_xy[0]
end_y = self.robot_base_xy[1]
angle = 0
for i in range(self.robot_joints.shape[0] - 1):
if i < 2:
start_x = end_x
start_y = end_y
angle = angle + self.robot_joints[i]
end_x = start_x + np.sin(angle) * self.lim_length
end_y = start_y + np.cos(angle) * self.lim_length
# mid_x = (start_x + end_x) / 2
# mid_y = (start_y + end_y) / 2
elif i == 2:
start_x = end_x
start_y = end_y
angle = angle + self.robot_joints[i]
end_x = start_x + np.sin(angle) * self.tool_center_point
end_y = start_y + np.cos(angle) * self.tool_center_point
# mid_x = (start_x + end_x) / 2
# mid_y = (start_y + end_y) / 2
return np.array([end_x, end_y])
def _eef_orientation_(self):
# print('joints0', self.robot_joints[0], self.robot_joints[1], self.robot_joints[2])
# print('joints1', float(self.robot_joints[0]), float(self.robot_joints[1]), float(self.robot_joints[2]))
return float(self.robot_joints[0]) + float(self.robot_joints[1]) + float(self.robot_joints[2])
# return float(self.robot_joints[0] + self.robot_joints[1] + self.robot_joints[2])
def _l2_(self, eef, position):
return ((eef[0] - position[0]) ** 2 + (eef[1] - position[1]) ** 2) ** (1/2)
def _grab_(self, position, eef):
grab = (self._l2_(eef, position) < 50 * self.scale)
# print(self._l2_(eef, position))
return grab
def _grab_z_(self, env_obj, eef_z):
lower_bound = env_obj['pos_z']
upper_bound = env_obj['pos_z'] + env_obj['size_z']
# print(f'bounds: {lower_bound}, {upper_bound}')
if eef_z >= lower_bound and eef_z <= upper_bound:
return True
else:
return False
def _gripper_closed_(self):
if self.robot_joints[-1] >= 0:
return True
else:
return False
def _get_serialized_objs_(self):
objs = OrderedDict()
keys = [
'size_xy',
'pos_xy',
'pos_z',
'size_z',
'orientation',
'lru_score',
]
for obj in self.manip_objs:
objs[obj] = {}
for key in keys:
objs[obj][key] = self.manip_objs[obj][key]
return objs
def _max_speed_(self, disp, lim):
if disp > lim:
return lim
if disp < -lim:
return -lim
return disp
def step(self, action: np.ndarray, eef_z=None):
# print([self.manip_objs[env_obj]['lru_score'] for env_obj in self.manip_objs if 'pos_xy' in self.manip_objs[env_obj]])
# print(action, self.robot_joints)
# Convert a possible numpy bool to a Python bool.
terminated = False
reward = 0
# action is target angles of the joints
assert action.shape[0] == self.robot_joints.shape[0]
for i in range(action.shape[0]):
# print('before change', self.robot_joints[i])
# self.robot_joints[i] = self.robot_joints[i] + self.Kp * self._ang_diff(action[i], self.robot_joints[i]) * self.dt
# self.robot_joints[i] = self.robot_joints[i] + self._max_speed_(
# self._ang_diff(action[i], self.robot_joints[i]), self.Kp * self.dt)
# print('after change', self.robot_joints[i])
self.robot_joints[i] = self.robot_joints[i] + self.Kp * 2 * self._ang_diff(action[i], self.robot_joints[i]) * self.dt
eef = self._eef_()
if eef_z is not None:
self.eef_z = eef_z * self.scale
# print(f'eef_z: {self.eef_z}')
# print('grab', self.grab)
if self.grab is not None:
assert self.grab_orientation is not None
self.manip_objs[self.grab]['pos_xy'] = eef + self.grab_position
self.manip_objs[self.grab]['pos_z'] = self.eef_z + self.grab_position_z
# print('grab orientation', self.grab_orientation)
# print('eef orientation', self._eef_orientation_())
self.manip_objs[self.grab]['orientation'] = self._eef_orientation_() + self.grab_orientation
# print('orientation', self.manip_objs[self.grab]['orientation'])
if self.manip_objs[self.grab]['pos_z'] < 0:
self.manip_objs[self.grab]['pos_z'] = 0
self.grab_position_z = self.manip_objs[self.grab]['pos_z'] - self.eef_z
# print(self.grab_position, eef, self.positions[1], 1)
# self.grab = None
# self.grab_position = None
if self._gripper_closed_():
if self.grab is None:
for obj in self.manip_objs:
if 'pos_xy' not in self.manip_objs[obj]:
continue
if self._grab_(self.manip_objs[obj]['pos_xy'], eef) and self._grab_z_(self.manip_objs[obj], self.eef_z):
self.grab = obj
self.grab_position = self.manip_objs[obj]['pos_xy'] - eef
self.grab_position_z = self.manip_objs[self.grab]['pos_z'] - self.eef_z
assert self.manip_objs[self.grab]['orientation'] is not None
self.grab_orientation = self.manip_objs[self.grab]['orientation'] - self._eef_orientation_()
self.highest_lru_score += 1
self.manip_objs[obj]['lru_score'] = self.highest_lru_score
self.manip_objs.move_to_end(obj, last=False)
break
else:
self.grab = None
self.grab_position = None
self.grab_position_z = None
self.grab_orientation = None
# print(self.grab_position, eef, self.positions[1], 2)
# self.renderer.render_step()
state = {
'joints': copy.deepcopy(self.robot_joints),
'eef': copy.deepcopy(self._eef_()),
'eef_z': copy.deepcopy(self.eef_z),
'eef_orientation': copy.deepcopy(self._eef_orientation_()),
'positions': copy.deepcopy(self._get_serialized_objs_()),
'grabbed_object': copy.deepcopy(self.grab),
'grab_position': copy.deepcopy(self.grab_position),
'grab_position_z': copy.deepcopy(self.grab_position_z),
'grab_orientation': copy.deepcopy(self.grab_orientation),
'scale': copy.deepcopy(self.scale),
}
return state, reward, terminated, {}
def reset(
self,
*,
seed: Optional[int] = None,
return_info: bool = False,
options: Optional[dict] = None
):
super().reset(seed=seed)
# Note that if you use custom reset bounds, it may lead to out-of-bound
# state/observations.
# low, high = utils.maybe_parse_reset_bounds(options, -0.6, -0.4)
# self.state = np.array([self.np_random.uniform(low=low, high=high), 0])
self.state = np.array([self.np_random.uniform(low=-0.6, high=-0.4), 0])
# self.renderer.reset()
# self.renderer.render_step()
if not return_info:
return np.array(self.state, dtype=np.float32)
else:
return np.array(self.state, dtype=np.float32), {}
def _height(self, xs):
return np.sin(3 * xs) * 0.45 + 0.55
def _ang_diff(self, theta1, theta2):
# Returns the difference between two angles in the range -pi to +pi
# print('angle diff', (theta1 - theta2 + np.pi) % (2 * np.pi) - np.pi)
# print(f'theta1 {theta1} theta2 {theta2}')
return (theta1 - theta2 + np.pi) % (2 * np.pi) - np.pi
def render(self, mode="human"):
# if self.render_mode is not None:
# return self.renderer.get_renders()
# else:
# return self._render(mode)
return self._render(mode)
def _blitRotate(self, surf, image, origin, pivot, angle):
image_rect = image.get_rect(topleft = (origin[0] - pivot[0], origin[1]-pivot[1]))
offset_center_to_pivot = pygame.math.Vector2(origin) - image_rect.center
rotated_offset = offset_center_to_pivot.rotate(-angle)
rotated_image_center = (origin[0] - rotated_offset.x, origin[1] - rotated_offset.y)
rotated_image = pygame.transform.rotate(image, angle)
rotated_image_rect = rotated_image.get_rect(center = rotated_image_center)
surf.blit(rotated_image, rotated_image_rect)
def get_pos_xy(self, manip_obj):
return self.manip_objs[manip_obj]['pos_xy']
def get_pos_orientation(self, manip_obj):
return self.manip_objs[manip_obj]['orientation']
def ik(self, xyo):
def x_constraint(q, xyo):
"""Returns the corresponding hand xy coordinates for
a given set of joint angle values [shoulder, elbow, wrist],
and the above defined arm segment lengths, L
q : np.array
the list of current joint angles
xy : np.array
current xy position (not used)
returns : np.array
the difference between current and desired x position
"""
xy = xyo[:2]
xy = [self.scale * x for x in xy]
return self.lim_length * np.sin(q[0]) + self.lim_length * np.sin(q[0] + q[1]) + self.tool_center_point * np.sin(q[0] + q[1] + q[2]) - xy[0]
def y_constraint(q, xyo):
"""Returns the corresponding hand xy coordinates for
a given set of joint angle values [shoulder, elbow, wrist],
and the above defined arm segment lengths, L
q : np.array
the list of current joint angles
xy : np.array
current xy position (not used)
returns : np.array
the difference between current and desired y position
"""
xy = xyo[:2]
xy = [self.scale * x for x in xy]
return self.lim_length * np.cos(q[0]) + self.lim_length * np.cos(q[0] + q[1]) + self.tool_center_point * np.cos(q[0] + q[1] + q[2]) - xy[1]
def sin_o_constraint(q, xyo):
"""Returns the corresponding hand xy coordinates for
a given set of joint angle values [shoulder, elbow, wrist],
and the above defined arm segment lengths, L
q : np.array
the list of current joint angles
xy : np.array
current xy position (not used)
returns : np.array
the difference between current and desired y position
"""
o = xyo[-1]
return (np.sin(q[0] + q[1] + q[2]) - np.sin(o)) ** 2
def cos_o_constraint(q, xyo):
"""Returns the corresponding hand xy coordinates for
a given set of joint angle values [shoulder, elbow, wrist],
and the above defined arm segment lengths, L
q : np.array
the list of current joint angles
xy : np.array
current xy position (not used)
returns : np.array
the difference between current and desired y position
"""
o = xyo[-1]
return (np.cos(q[0] + q[1] + q[2]) - np.cos(o)) ** 2 + (np.sin(q[0] + q[1] + q[2]) - np.sin(o)) ** 2
def distance_to_default(q, *args):
"""Objective function to minimize
Calculates the euclidean distance through joint space to the
default arm configuration. The weight list allows the penalty of
each joint being away from the resting position to be scaled
differently, such that the arm tries to stay closer to resting
state more for higher weighted joints than those with a lower
weight.
q : np.array
the list of current joint angles
returns : scalar
euclidean distance to the default arm position
"""
# weights found with trial and error,
# get some wrist bend, but not much
weight = [1, 1, 0.5]
try:
action = np.sqrt(np.sum([(qi - q0i)**2 * wi
for qi, q0i, wi in zip(q, self.robot_joints_init.tolist()[:-1], weight)]))
except Exception:
print(Exception)
return action
if len(xyo) == 3:
ik_result = scipy.optimize.fmin_slsqp(
func=distance_to_default,
x0=self.robot_joints,
eqcons=[x_constraint,
y_constraint,
# sin_o_constraint,
cos_o_constraint],
# uncomment to add in min / max angles for the joints
# ieqcons=[joint_limits_upper_constraint,
# joint_limits_lower_constraint],
args=(xyo,),
iprint=0) # iprint=0 suppresses output
elif len(xyo) == 2:
ik_result = scipy.optimize.fmin_slsqp(
func=distance_to_default,
x0=self.robot_joints,
eqcons=[x_constraint,
y_constraint,
# sin_o_constraint,
],
# uncomment to add in min / max angles for the joints
# ieqcons=[joint_limits_upper_constraint,
# joint_limits_lower_constraint],
args=(xyo,),
iprint=0) # iprint=0 suppresses output
return ik_result
def _calculate_img_starting_pos(self, img_pos, img_size):
x = img_pos[0] - img_size[0] / 2
y = img_pos[1] - img_size[1] / 2
return [x, y]
def _render(self, mode="human"):
assert mode in self.metadata["render_modes"]
try:
import pygame
from pygame import gfxdraw
except ImportError:
raise DependencyNotInstalled(
"pygame is not installed, run `pip install gym[classic_control]`"
)
if self.screen is None:
pygame.init()
if mode == "human":
pygame.display.init()
self.screen = pygame.display.set_mode(
(self.screen_width, self.screen_height)
)
else: # mode in {"rgb_array", "single_rgb_array"}
self.screen = pygame.Surface((self.screen_width, self.screen_height))
if self.clock is None:
self.clock = pygame.time.Clock()
# world_width = 200
# scale = self.screen_width / world_width
self.surf = pygame.Surface((self.screen_width, self.screen_height))
self.surf.fill((255, 255, 255))
self.surf.blit(self.env_objs['wood']['image'], (0, 0))
for obj in list(self.manip_objs.keys())[::-1]:
if 'pos_xy' in self.manip_objs[obj]:
try:
image_transformed = pygame.transform.rotate(
self.manip_objs[obj]['image'], np.rad2deg(self.manip_objs[obj]['orientation']))
except Exception as e:
print(e)
print(self.manip_objs[obj]['orientation'], np.rad2deg(self.manip_objs[obj]['orientation']))
# print(obj, self.manip_objs[obj]['orientation'])
new_rect = image_transformed.get_rect()
# self.surf.blit(image_lim_transformed, (mid_x - new_rect[2] / 2, mid_y - new_rect[3] / 2))
self.surf.blit(image_transformed, self._calculate_img_starting_pos(
self.manip_objs[obj]['pos_xy'],
[new_rect[2], new_rect[3]]
))
# self.surf.blit(self.image_apple, self.positions[0] - self.size[0] / 2)
# self.surf.blit(self.image_orange, self.positions[1] - self.size[1] / 2)
# self.surf.blit(self.image_banana, self.positions[2] - self.size[2] / 2)
start_x = 0
start_y = 0
end_x = self.robot_base_xy[0]
end_y = self.robot_base_xy[1]
angle = 0
for i in range(self.robot_joints.shape[0] - 1):
if i < 2:
start_x = end_x
start_y = end_y
angle = angle + self.robot_joints[i]
end_x = start_x + np.sin(angle) * self.lim_length
end_y = start_y + np.cos(angle) * self.lim_length
mid_x = (start_x + end_x) / 2
mid_y = (start_y + end_y) / 2
image_lim_transformed = pygame.transform.rotate(self.env_objs['lim']['image'], np.rad2deg(angle))
new_rect = image_lim_transformed.get_rect()
self.surf.blit(image_lim_transformed, (mid_x - new_rect[2] / 2, mid_y - new_rect[3] / 2))
elif i == 2:
start_x = end_x
start_y = end_y
angle = angle + self.robot_joints[i]
# print('gripper angle:', self.robot_joints[-1])
if self._gripper_closed_():
mid_x = start_x + np.sin(angle) * (self.env_objs['gripper_closed']['size_xy'][1] / 2 + 38 * self.scale)
mid_y = start_y + np.cos(angle) * (self.env_objs['gripper_closed']['size_xy'][1] / 2 + 38 * self.scale)
image_gripper_closed_transformed = pygame.transform.rotate(self.env_objs['gripper_closed']['image'], np.rad2deg(angle))
new_rect = image_gripper_closed_transformed.get_rect()
self.surf.blit(image_gripper_closed_transformed, (mid_x - new_rect[2] / 2, mid_y - new_rect[3] / 2))
else:
mid_x = start_x + np.sin(angle) * (self.env_objs['gripper_open']['size_xy'][1] / 2 + 38 * self.scale)
mid_y = start_y + np.cos(angle) * (self.env_objs['gripper_open']['size_xy'][1] / 2 + 38 * self.scale)
image_gripper_open_transformed = pygame.transform.rotate(self.env_objs['gripper_open']['image'], np.rad2deg(angle))
new_rect = image_gripper_open_transformed.get_rect()
self.surf.blit(image_gripper_open_transformed, (mid_x - new_rect[2] / 2, mid_y - new_rect[3] / 2))
# self.surf = pygame.transform.flip(self.surf, False, True)
self.screen.blit(self.surf, (0, 0))
if mode == "human":
pygame.event.pump()
self.clock.tick(self.metadata["render_fps"])
pygame.display.flip()
elif mode in {"rgb_array", "single_rgb_array"}:
return np.transpose(
np.array(pygame.surfarray.pixels3d(self.screen)), axes=(1, 0, 2)
)
def close(self):
if self.screen is not None:
import pygame
pygame.display.quit()
pygame.quit()
self.isopen = False
def get_base_xy(self):
return self.robot_base_xy
def get_joint_angles(self):
return self.robot_joints
if __name__ == '__main__':
# env = TinyUR5Env(render_mode='rgb_array')
env = TinyUR5Env(render_mode='human')
observation, info = env.reset(seed=42, return_info=True)
for i in range(1000):
print(i)
input()
action = env.action_space.sample()
observation, reward, done, info = env.step(action)
img = env.render()
# print(img[0].shape)
if done:
observation, info = env.reset(return_info=True)
env.close()