Spaces:
Runtime error
Runtime error
Upload eval_retrieval_video.py
Browse files- BLIP/eval_retrieval_video.py +250 -0
BLIP/eval_retrieval_video.py
ADDED
@@ -0,0 +1,250 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
'''
|
2 |
+
* Copyright (c) 2022, salesforce.com, inc.
|
3 |
+
* All rights reserved.
|
4 |
+
* SPDX-License-Identifier: BSD-3-Clause
|
5 |
+
* For full license text, see LICENSE.txt file in the repo root or https://opensource.org/licenses/BSD-3-Clause
|
6 |
+
* By Junnan Li
|
7 |
+
'''
|
8 |
+
import argparse
|
9 |
+
import os
|
10 |
+
import ruamel_yaml as yaml
|
11 |
+
import numpy as np
|
12 |
+
import random
|
13 |
+
import time
|
14 |
+
import datetime
|
15 |
+
import json
|
16 |
+
from pathlib import Path
|
17 |
+
|
18 |
+
import torch
|
19 |
+
import torch.nn as nn
|
20 |
+
import torch.nn.functional as F
|
21 |
+
import torch.backends.cudnn as cudnn
|
22 |
+
import torch.distributed as dist
|
23 |
+
from torch.utils.data import DataLoader
|
24 |
+
|
25 |
+
from models.blip_retrieval import blip_retrieval
|
26 |
+
import utils
|
27 |
+
from data.video_dataset import VideoDataset
|
28 |
+
|
29 |
+
|
30 |
+
@torch.no_grad()
|
31 |
+
def evaluation(model, data_loader, tokenizer, device, config):
|
32 |
+
# test
|
33 |
+
model.eval()
|
34 |
+
|
35 |
+
metric_logger = utils.MetricLogger(delimiter=" ")
|
36 |
+
header = 'Evaluation:'
|
37 |
+
|
38 |
+
print('Computing features for evaluation...')
|
39 |
+
start_time = time.time()
|
40 |
+
|
41 |
+
texts = data_loader.dataset.text
|
42 |
+
num_text = len(texts)
|
43 |
+
text_bs = 256
|
44 |
+
text_ids = []
|
45 |
+
text_embeds = []
|
46 |
+
text_atts = []
|
47 |
+
for i in range(0, num_text, text_bs):
|
48 |
+
text = texts[i: min(num_text, i+text_bs)]
|
49 |
+
text_input = tokenizer(text, padding='max_length', truncation=True, max_length=35, return_tensors="pt").to(device)
|
50 |
+
text_output = model.text_encoder(text_input.input_ids, attention_mask = text_input.attention_mask, mode='text')
|
51 |
+
text_embed = F.normalize(model.text_proj(text_output.last_hidden_state[:,0,:]))
|
52 |
+
text_embeds.append(text_embed)
|
53 |
+
text_ids.append(text_input.input_ids)
|
54 |
+
text_atts.append(text_input.attention_mask)
|
55 |
+
|
56 |
+
text_embeds = torch.cat(text_embeds,dim=0)
|
57 |
+
text_ids = torch.cat(text_ids,dim=0)
|
58 |
+
text_atts = torch.cat(text_atts,dim=0)
|
59 |
+
text_ids[:,0] = tokenizer.additional_special_tokens_ids[0]
|
60 |
+
|
61 |
+
video_feats = []
|
62 |
+
video_embeds = []
|
63 |
+
for video, video_id in data_loader:
|
64 |
+
|
65 |
+
B,N,C,W,H = video.size()
|
66 |
+
video = video.view(-1,C,W,H)
|
67 |
+
video = video.to(device,non_blocking=True)
|
68 |
+
video_feat = model.visual_encoder(video)
|
69 |
+
video_embed = model.vision_proj(video_feat[:,0,:])
|
70 |
+
video_embed = video_embed.view(B,N,-1).mean(dim=1)
|
71 |
+
video_embed = F.normalize(video_embed,dim=-1)
|
72 |
+
|
73 |
+
video_feat = video_feat.view(B,-1,video_feat.shape[-1])
|
74 |
+
video_feats.append(video_feat.cpu())
|
75 |
+
video_embeds.append(video_embed)
|
76 |
+
|
77 |
+
video_feats = torch.cat(video_feats,dim=0)
|
78 |
+
video_embeds = torch.cat(video_embeds,dim=0)
|
79 |
+
|
80 |
+
sims_matrix = video_embeds @ text_embeds.t()
|
81 |
+
score_matrix_v2t = torch.full((len(texts),len(texts)),-100.0).to(device)
|
82 |
+
|
83 |
+
num_tasks = utils.get_world_size()
|
84 |
+
rank = utils.get_rank()
|
85 |
+
step = sims_matrix.size(0)//num_tasks + 1
|
86 |
+
start = rank*step
|
87 |
+
end = min(sims_matrix.size(0),start+step)
|
88 |
+
|
89 |
+
for i,sims in enumerate(metric_logger.log_every(sims_matrix[start:end], 50, header)):
|
90 |
+
topk_sim, topk_idx = sims.topk(k=config['k_test'], dim=0)
|
91 |
+
|
92 |
+
encoder_output = video_feats[start+i].repeat(config['k_test'],1,1).to(device,non_blocking=True)
|
93 |
+
encoder_att = torch.ones(encoder_output.size()[:-1],dtype=torch.long).to(device,non_blocking=True)
|
94 |
+
output = model.text_encoder(text_ids[topk_idx],
|
95 |
+
attention_mask = text_atts[topk_idx],
|
96 |
+
encoder_hidden_states = encoder_output,
|
97 |
+
encoder_attention_mask = encoder_att,
|
98 |
+
return_dict = True,
|
99 |
+
)
|
100 |
+
score = model.itm_head(output.last_hidden_state[:,0,:])[:,1]
|
101 |
+
score_matrix_v2t[start+i,topk_idx] = score + topk_sim
|
102 |
+
|
103 |
+
sims_matrix = sims_matrix.t()
|
104 |
+
score_matrix_t2v = torch.full((len(texts),len(texts)),-100.0).to(device)
|
105 |
+
|
106 |
+
step = sims_matrix.size(0)//num_tasks + 1
|
107 |
+
start = rank*step
|
108 |
+
end = min(sims_matrix.size(0),start+step)
|
109 |
+
|
110 |
+
for i,sims in enumerate(metric_logger.log_every(sims_matrix[start:end], 50, header)):
|
111 |
+
|
112 |
+
topk_sim, topk_idx = sims.topk(k=config['k_test'], dim=0)
|
113 |
+
encoder_output = video_feats[topk_idx].to(device,non_blocking=True)
|
114 |
+
encoder_att = torch.ones(encoder_output.size()[:-1],dtype=torch.long).to(device,non_blocking=True)
|
115 |
+
output = model.text_encoder(text_ids[start+i].repeat(config['k_test'],1),
|
116 |
+
attention_mask = text_atts[start+i].repeat(config['k_test'],1),
|
117 |
+
encoder_hidden_states = encoder_output,
|
118 |
+
encoder_attention_mask = encoder_att,
|
119 |
+
return_dict = True,
|
120 |
+
)
|
121 |
+
score = model.itm_head(output.last_hidden_state[:,0,:])[:,1]
|
122 |
+
score_matrix_t2v[start+i,topk_idx] = score + topk_sim
|
123 |
+
|
124 |
+
if args.distributed:
|
125 |
+
dist.barrier()
|
126 |
+
torch.distributed.all_reduce(score_matrix_v2t, op=torch.distributed.ReduceOp.SUM)
|
127 |
+
torch.distributed.all_reduce(score_matrix_t2v, op=torch.distributed.ReduceOp.SUM)
|
128 |
+
|
129 |
+
total_time = time.time() - start_time
|
130 |
+
total_time_str = str(datetime.timedelta(seconds=int(total_time)))
|
131 |
+
print('Evaluation time {}'.format(total_time_str))
|
132 |
+
|
133 |
+
return score_matrix_v2t.cpu().numpy(), score_matrix_t2v.cpu().numpy()
|
134 |
+
|
135 |
+
|
136 |
+
|
137 |
+
@torch.no_grad()
|
138 |
+
def itm_eval(scores_v2t, scores_t2v, txt2vmg, vid2txt):
|
139 |
+
|
140 |
+
#Video->Text
|
141 |
+
ranks = np.zeros(scores_v2t.shape[0])
|
142 |
+
for index,score in enumerate(scores_v2t):
|
143 |
+
inds = np.argsort(score)[::-1]
|
144 |
+
ranks[index] = np.where(inds == vid2txt[index])[0][0]
|
145 |
+
|
146 |
+
# Compute metrics
|
147 |
+
tr1 = 100.0 * len(np.where(ranks < 1)[0]) / len(ranks)
|
148 |
+
tr5 = 100.0 * len(np.where(ranks < 5)[0]) / len(ranks)
|
149 |
+
tr10 = 100.0 * len(np.where(ranks < 10)[0]) / len(ranks)
|
150 |
+
|
151 |
+
#Text->Video
|
152 |
+
ranks = np.zeros(scores_t2v.shape[0])
|
153 |
+
|
154 |
+
for index,score in enumerate(scores_t2v):
|
155 |
+
inds = np.argsort(score)[::-1]
|
156 |
+
ranks[index] = np.where(inds == txt2vmg[index])[0][0]
|
157 |
+
|
158 |
+
mdR = np.median(ranks+1)
|
159 |
+
|
160 |
+
# Compute metrics
|
161 |
+
vr1 = 100.0 * len(np.where(ranks < 1)[0]) / len(ranks)
|
162 |
+
vr5 = 100.0 * len(np.where(ranks < 5)[0]) / len(ranks)
|
163 |
+
vr10 = 100.0 * len(np.where(ranks < 10)[0]) / len(ranks)
|
164 |
+
|
165 |
+
tr_mean = (tr1 + tr5 + tr10) / 3
|
166 |
+
vr_mean = (vr1 + vr5 + vr10) / 3
|
167 |
+
r_mean = (tr_mean + vr_mean) / 2
|
168 |
+
|
169 |
+
eval_result = {'txt_r1': tr1,
|
170 |
+
'txt_r5': tr5,
|
171 |
+
'txt_r10': tr10,
|
172 |
+
'txt_r_mean': tr_mean,
|
173 |
+
'vid_r1': vr1,
|
174 |
+
'vid_r5': vr5,
|
175 |
+
'vid_r10': vr10,
|
176 |
+
'vid_r_mean': vr_mean,
|
177 |
+
'vid_mdR': mdR,
|
178 |
+
'r_mean': r_mean}
|
179 |
+
return eval_result
|
180 |
+
|
181 |
+
|
182 |
+
|
183 |
+
|
184 |
+
def main(args, config):
|
185 |
+
utils.init_distributed_mode(args)
|
186 |
+
|
187 |
+
device = torch.device(args.device)
|
188 |
+
|
189 |
+
# fix the seed for reproducibility
|
190 |
+
seed = args.seed + utils.get_rank()
|
191 |
+
torch.manual_seed(seed)
|
192 |
+
np.random.seed(seed)
|
193 |
+
random.seed(seed)
|
194 |
+
cudnn.benchmark = True
|
195 |
+
|
196 |
+
#### Dataset ####
|
197 |
+
print("Creating retrieval dataset")
|
198 |
+
test_dataset = VideoDataset(config['video_root'],config['ann_root'],num_frm=config['num_frm_test'],
|
199 |
+
max_img_size=config['image_size'], frm_sampling_strategy='uniform')
|
200 |
+
|
201 |
+
test_loader = DataLoader(
|
202 |
+
test_dataset,
|
203 |
+
batch_size=config['batch_size'],
|
204 |
+
num_workers=4,
|
205 |
+
pin_memory=True,
|
206 |
+
drop_last=False,
|
207 |
+
shuffle=False,
|
208 |
+
)
|
209 |
+
|
210 |
+
#### Model ####
|
211 |
+
print("Creating model")
|
212 |
+
model = blip_retrieval(pretrained=config['pretrained'], image_size=config['image_size'], vit=config['vit'])
|
213 |
+
|
214 |
+
model = model.to(device)
|
215 |
+
|
216 |
+
model_without_ddp = model
|
217 |
+
if args.distributed:
|
218 |
+
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.gpu])
|
219 |
+
model_without_ddp = model.module
|
220 |
+
|
221 |
+
score_v2t, score_t2v, = evaluation(model_without_ddp, test_loader, model_without_ddp.tokenizer, device, config)
|
222 |
+
|
223 |
+
if utils.is_main_process():
|
224 |
+
|
225 |
+
test_result = itm_eval(score_v2t, score_t2v, test_loader.dataset.txt2video, test_loader.dataset.video2txt)
|
226 |
+
print(test_result)
|
227 |
+
|
228 |
+
log_stats = {**{f'{k}': v for k, v in test_result.items()},}
|
229 |
+
with open(os.path.join(args.output_dir, "test_result.txt"),"a") as f:
|
230 |
+
f.write(json.dumps(log_stats) + "\n")
|
231 |
+
|
232 |
+
|
233 |
+
if __name__ == '__main__':
|
234 |
+
parser = argparse.ArgumentParser()
|
235 |
+
parser.add_argument('--config', default='./configs/retrieval_msrvtt.yaml')
|
236 |
+
parser.add_argument('--output_dir', default='output/Retrieval_msrvtt')
|
237 |
+
parser.add_argument('--device', default='cuda')
|
238 |
+
parser.add_argument('--seed', default=42, type=int)
|
239 |
+
parser.add_argument('--world_size', default=1, type=int, help='number of distributed processes')
|
240 |
+
parser.add_argument('--dist_url', default='env://', help='url used to set up distributed training')
|
241 |
+
parser.add_argument('--distributed', default=True, type=bool)
|
242 |
+
args = parser.parse_args()
|
243 |
+
|
244 |
+
config = yaml.load(open(args.config, 'r'), Loader=yaml.Loader)
|
245 |
+
|
246 |
+
Path(args.output_dir).mkdir(parents=True, exist_ok=True)
|
247 |
+
|
248 |
+
yaml.dump(config, open(os.path.join(args.output_dir, 'config.yaml'), 'w'))
|
249 |
+
|
250 |
+
main(args, config)
|