Spaces:
Runtime error
Runtime error
import clip | |
import gc | |
import numpy as np | |
import os | |
import pandas as pd | |
import requests | |
import torch | |
import torchvision.transforms as T | |
import torchvision.transforms.functional as TF | |
#from IPython.display import display | |
from PIL import Image | |
from torch import nn | |
from torch.nn import functional as F | |
from torchvision import transforms | |
from torchvision.transforms.functional import InterpolationMode | |
from BLIP.models.blip import blip_decoder | |
import gradio as gr | |
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu') | |
blip_image_eval_size = 384 | |
blip_model_url = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model*_base_caption.pth' | |
blip_model = blip_decoder(pretrained=blip_model_url, image_size=blip_image_eval_size, vit='base') | |
blip_model.eval() | |
blip_model = blip_model.to(device) | |
def generate_caption(pil_image): | |
gpu_image = transforms.Compose([ | |
transforms.Resize((blip_image_eval_size, blip_image_eval_size), interpolation=InterpolationMode.BICUBIC), | |
transforms.ToTensor(), | |
transforms.Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711)) | |
])(pil_image).unsqueeze(0).to(device) | |
with torch.no_grad(): | |
caption = blip_model.generate(gpu_image, sample=False, num_beams=3, max_length=20, min_length=5) | |
return caption[0] | |
def load_list(filename): | |
with open(filename, 'r', encoding='utf-8', errors='replace') as f: | |
items = [line.strip() for line in f.readlines()] | |
return items | |
def rank(model, image_features, text_array, top_count=1): | |
top_count = min(top_count, len(text_array)) | |
text_tokens = clip.tokenize([text for text in text_array])#.cuda() | |
with torch.no_grad(): | |
text_features = model.encode_text(text_tokens).float() | |
text_features /= text_features.norm(dim=-1, keepdim=True) | |
similarity = torch.zeros((1, len(text_array))).to(device) | |
for i in range(image_features.shape[0]): | |
similarity += (100.0 * image_features[i].unsqueeze(0) @ text_features.T).softmax(dim=-1) | |
similarity /= image_features.shape[0] | |
top_probs, top_labels = similarity.cpu().topk(top_count, dim=-1) | |
return [(text_array[top_labels[0][i].numpy()], (top_probs[0][i].numpy()*100)) for i in range(top_count)] | |
def interrogate(cover): | |
image = Image.fromarray(cover) | |
#image = cover | |
models = models1 | |
#caption = generate_caption(Image.fromarray(cover)) | |
caption = generate_caption(image) | |
if len(models) == 0: | |
#print(f"\n\n{caption}") | |
return | |
table = [] | |
bests = [[('',0)]]*5 | |
for model_name in models: | |
#print(f"Interrogating with {model_name}...") | |
model, preprocess = clip.load(model_name) | |
#model.cuda().eval() | |
images = preprocess(image).unsqueeze(0)#.cuda() | |
with torch.no_grad(): | |
image_features = model.encode_image(images).float() | |
image_features /= image_features.norm(dim=-1, keepdim=True) | |
ranks = [ | |
rank(model, image_features, mediums), | |
rank(model, image_features, ["by "+artist for artist in artists]), | |
rank(model, image_features, trending_list), | |
rank(model, image_features, movements), | |
rank(model, image_features, flavors, top_count=3) | |
] | |
for i in range(len(ranks)): | |
confidence_sum = 0 | |
for ci in range(len(ranks[i])): | |
confidence_sum += ranks[i][ci][1] | |
if confidence_sum > sum(bests[i][t][1] for t in range(len(bests[i]))): | |
bests[i] = ranks[i] | |
row = [model_name] | |
for r in ranks: | |
row.append(', '.join([f"{x[0]} ({x[1]:0.1f}%)" for x in r])) | |
table.append(row) | |
del model | |
gc.collect() | |
#display(pd.DataFrame(table, columns=["Model", "Medium", "Artist", "Trending", "Movement", "Flavors"])) | |
flaves = ', '.join([f"{x[0]}" for x in bests[4]]) | |
medium = bests[0][0][0] | |
if caption.startswith(medium): | |
return(f"{caption} {bests[1][0][0]}, {bests[2][0][0]}, {bests[3][0][0]}, {flaves}") | |
#print(f"{caption} {bests[3][0][0]}, {flaves}") | |
else: | |
return(f"{caption}, {medium} {bests[1][0][0]}, {bests[2][0][0]}, {bests[3][0][0]}, {flaves}") | |
#print(f"{caption} {bests[3][0][0]}, {flaves}") | |
data_path = "./clip-interrogator/data/" | |
artists = load_list(os.path.join(data_path, 'artists.txt')) | |
flavors = load_list(os.path.join(data_path, 'flavors.txt')) | |
mediums = load_list(os.path.join(data_path, 'mediums.txt')) | |
movements = load_list(os.path.join(data_path, 'movements.txt')) | |
sites = ['Artstation', 'behance', 'cg society', 'cgsociety', 'deviantart', 'dribble', 'flickr', 'instagram', 'pexels', 'pinterest', 'pixabay', 'pixiv', 'polycount', 'reddit', 'shutterstock', 'tumblr', 'unsplash', 'zbrush central'] | |
trending_list = [site for site in sites] | |
trending_list.extend(["trending on "+site for site in sites]) | |
trending_list.extend(["featured on "+site for site in sites]) | |
trending_list.extend([site+" contest winner" for site in sites]) | |
models1 = ['ViT-B/32'] | |
width = 130 | |
height = 180 | |
cover = gr.inputs.Image(shape=(width, height), label='Upload cover image to classify') | |
label = gr.outputs.Label(label='Model prediction') | |
examples=["00064.jpg","00068.jpg", "00069.jpg"] | |
title="Image2Text-CLIP Application" | |
description=''' | |
此文本是使用 OpenAI CLIP 模型針對各種藝術家、媒介和風格測試給定圖像,轉化出AI對於圖像的理解. | |
<th> | |
<iframe width="560" height="315" src="https://www.youtube.com/embed/u0HG77RNhPE" title="YouTube video player" frameborder="0" allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture" allowfullscreen></iframe> | |
</th> | |
### 以下請輸入指定圖片, 或是選擇以下3個樣本 | |
''' | |
gr.Interface(fn=interrogate,inputs=cover,outputs=label,examples=examples,title=title,description=description).launch()#(share=True) |