|
|
|
|
|
from typing import List, Optional, Tuple, Union |
|
|
|
import torch |
|
import torch.nn as nn |
|
from torch.nn import CrossEntropyLoss |
|
from .utils import * |
|
from ThirdParty.PointLLM.pointllm.utils import * |
|
|
|
from contextlib import nullcontext |
|
from transformers import AutoConfig, AutoModelForCausalLM, \ |
|
LlamaConfig, LlamaModel, LlamaForCausalLM |
|
|
|
from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast |
|
|
|
import os |
|
|
|
|
|
import logging |
|
logger = logging.getLogger(__name__) |
|
|
|
class PointLLMConfig(LlamaConfig): |
|
model_type = "pointllm" |
|
|
|
class PointLLMLlamaModel(LlamaModel): |
|
config_class = PointLLMConfig |
|
|
|
def __init__(self, config: LlamaConfig): |
|
super(PointLLMLlamaModel, self).__init__(config) |
|
|
|
self.point_backbone_type = config.point_backbone |
|
logger.info(f"Using {self.point_backbone_type}.") |
|
|
|
if self.point_backbone_type == "PointBERT": |
|
from pointllm.model import PointTransformer |
|
|
|
point_bert_config_name = getattr(config, "point_backbone_config_name", "PointTransformer_8192point_2layer") |
|
point_bert_config_addr = os.path.join(os.path.dirname(__file__), "pointbert", f"{point_bert_config_name}.yaml") |
|
print(f"Loading PointBERT config from {point_bert_config_addr}.") |
|
point_bert_config = cfg_from_yaml_file(point_bert_config_addr) |
|
if getattr(config, "use_color", False): |
|
point_bert_config.model.point_dims = 6 |
|
use_max_pool = getattr(point_bert_config.model, "use_max_pool", False) |
|
|
|
self.point_backbone = PointTransformer(point_bert_config.model, use_max_pool=use_max_pool) |
|
logger.info(f"Using {self.point_backbone.point_dims} dim of points.") |
|
|
|
self.point_backbone_config = { |
|
"point_cloud_dim": point_bert_config.model.point_dims, |
|
"backbone_output_dim": point_bert_config.model.trans_dim if not use_max_pool else point_bert_config.model.trans_dim * 2, |
|
"project_output_dim": self.config.hidden_size, |
|
"point_token_len": point_bert_config.model.num_group + 1 if not use_max_pool else 1, |
|
"mm_use_point_start_end": self.config.mm_use_point_start_end, |
|
"projection_hidden_layer": point_bert_config.model.get('projection_hidden_layer', 0), |
|
"use_max_pool": use_max_pool |
|
} |
|
if point_bert_config.model.get('projection_hidden_layer', 0) > 0: |
|
self.point_backbone_config["projection_hidden_dim"] = point_bert_config.model.projection_hidden_dim |
|
|
|
logger.info(f"Use max pool is {use_max_pool}. Number of point token is {self.point_backbone_config['point_token_len']}.") |
|
|
|
|
|
backbone_output_dim = self.point_backbone_config["backbone_output_dim"] |
|
logger.info(f"Point backbone output dim: {backbone_output_dim}.") |
|
logger.info(f"Use {self.point_backbone_config['projection_hidden_layer']} projection hiddent layers.") |
|
if self.point_backbone_config['projection_hidden_layer'] > 0: |
|
|
|
projection_layers = [] |
|
last_dim = backbone_output_dim |
|
for i in range(point_bert_config.model.projection_hidden_layer): |
|
projection_layers.append(nn.Linear(last_dim, self.point_backbone_config["projection_hidden_dim"][i])) |
|
projection_layers.append(nn.GELU()) |
|
last_dim = self.point_backbone_config["projection_hidden_dim"][i] |
|
|
|
projection_layers.append(nn.Linear(last_dim, self.point_backbone_config["project_output_dim"])) |
|
self.point_proj = nn.Sequential(*projection_layers) |
|
logger.info(f"Each layer with {point_bert_config.model.projection_hidden_dim} hidden units.") |
|
else: |
|
|
|
self.point_proj = nn.Linear(backbone_output_dim, self.point_backbone_config['project_output_dim']) |
|
logger.info(f"Point projector output dim: {self.point_backbone_config['project_output_dim']}.") |
|
|
|
self.fix_pointnet = False |
|
self.fix_llm = False |
|
|
|
def load_point_backbone_checkpoint(self, checkpoint_path=None): |
|
self.point_backbone.load_checkpoint(self.config.point_backbone_ckpt if checkpoint_path is None else checkpoint_path) |
|
|
|
def forward( |
|
self, |
|
input_ids: torch.LongTensor = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
past_key_values: Optional[List[torch.FloatTensor]] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
point_clouds: Optional[torch.FloatTensor] = None, |
|
return_dict: Optional[bool] = None, |
|
) -> Union[Tuple, BaseModelOutputWithPast]: |
|
|
|
|
|
orig_embeds_params = getattr(self, 'orig_embeds_params', None) |
|
|
|
if inputs_embeds is None: |
|
inputs_embeds = self.embed_tokens(input_ids) |
|
|
|
point_backbone = getattr(self, 'point_backbone', None) |
|
point_backbone_config = getattr(self, 'point_backbone_config', None) |
|
|
|
if point_backbone is not None and (input_ids.shape[1] != 1 or self.training) and point_clouds is not None: |
|
|
|
with torch.no_grad() if self.fix_pointnet else nullcontext(): |
|
if self.fix_pointnet: |
|
self.point_backbone.eval() |
|
if type(point_clouds) is list: |
|
|
|
point_features = [] |
|
for point_cloud in point_clouds: |
|
point_feature = self.point_backbone(point_cloud.unsqueeze(0))[0] |
|
point_features.append(point_feature) |
|
else: |
|
point_features = self.point_backbone(point_clouds) |
|
|
|
if type(point_clouds) is list: |
|
point_features = [self.point_proj(point_feature) for point_feature in point_features] |
|
else: |
|
point_features = self.point_proj(point_features) |
|
|
|
dummy_point_features = torch.zeros(point_backbone_config['point_token_len'], point_backbone_config['backbone_output_dim'], device=inputs_embeds.device, dtype=inputs_embeds.dtype) |
|
dummy_point_features = self.point_proj(dummy_point_features) |
|
|
|
new_input_embeds = [] |
|
cur_point_idx = 0 |
|
for cur_input_ids, cur_input_embeds in zip(input_ids, inputs_embeds): |
|
if (cur_input_ids == point_backbone_config['point_patch_token']).sum() == 0: |
|
|
|
cur_input_embeds = cur_input_embeds + (0. * dummy_point_features).sum() |
|
new_input_embeds.append(cur_input_embeds) |
|
cur_point_idx += 1 |
|
continue |
|
cur_point_features = point_features[cur_point_idx].to(device=cur_input_embeds.device) |
|
num_patches = cur_point_features.shape[0] |
|
if point_backbone_config['mm_use_point_start_end']: |
|
if (cur_input_ids == point_backbone_config["point_start_token"]).sum() != (cur_input_ids == point_backbone_config["point_end_token"]).sum(): |
|
raise ValueError("The number of point start tokens and point end tokens should be the same.") |
|
point_start_tokens = torch.where(cur_input_ids == point_backbone_config["point_start_token"])[0] |
|
for point_start_token_pos in point_start_tokens: |
|
if cur_input_ids[point_start_token_pos + num_patches + 1] != point_backbone_config["point_end_token"]: |
|
raise ValueError("The point end token should follow the point start token.") |
|
if orig_embeds_params is not None: |
|
cur_new_input_embeds = torch.cat((cur_input_embeds[:point_start_token_pos].detach(), cur_input_embeds[point_start_token_pos:point_start_token_pos+1], cur_point_features, cur_input_embeds[point_start_token_pos + num_patches + 1:point_start_token_pos + num_patches + 2], cur_input_embeds[point_start_token_pos + num_patches + 2:].detach()), dim=0) |
|
else: |
|
cur_new_input_embeds = torch.cat((cur_input_embeds[:point_start_token_pos+1], cur_point_features, cur_input_embeds[point_start_token_pos + num_patches + 1:]), dim=0) |
|
cur_point_idx += 1 |
|
new_input_embeds.append(cur_new_input_embeds) |
|
else: |
|
if (cur_input_ids == point_backbone_config["point_patch_token"]).sum() != num_patches: |
|
raise ValueError("The number of point patch tokens should be the same as the number of point patches.") |
|
masked_indices = torch.where(cur_input_ids == point_backbone_config["point_patch_token"])[0] |
|
mask_index_start = masked_indices[0] |
|
if (masked_indices != torch.arange(mask_index_start, mask_index_start+num_patches, device=masked_indices.device, dtype=masked_indices.dtype)).any(): |
|
raise ValueError("The point patch tokens should be consecutive.") |
|
if orig_embeds_params is not None: |
|
cur_new_input_embeds = torch.cat((cur_input_embeds[:mask_index_start].detach(), cur_point_features, cur_input_embeds[mask_index_start+num_patches:].detach()), dim=0) |
|
else: |
|
cur_new_input_embeds = torch.cat((cur_input_embeds[:mask_index_start], cur_point_features, cur_input_embeds[mask_index_start+num_patches:]), dim=0) |
|
new_input_embeds.append(cur_new_input_embeds) |
|
cur_point_idx += 1 |
|
inputs_embeds = torch.stack(new_input_embeds, dim=0) |
|
|
|
return super(PointLLMLlamaModel, self).forward( |
|
input_ids=None, attention_mask=attention_mask, past_key_values=past_key_values, |
|
inputs_embeds=inputs_embeds, use_cache=use_cache, |
|
output_attentions=output_attentions, output_hidden_states=output_hidden_states, |
|
return_dict=return_dict |
|
) |
|
|
|
|
|
class PointLLMLlamaForCausalLM(LlamaForCausalLM): |
|
config_class = PointLLMConfig |
|
|
|
def __init__(self, config): |
|
super(LlamaForCausalLM, self).__init__(config) |
|
self.model = PointLLMLlamaModel(config) |
|
|
|
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) |
|
|
|
|
|
self.post_init() |
|
|
|
def get_model(self): |
|
return self.model |
|
|
|
def forward( |
|
self, |
|
input_ids: torch.LongTensor = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
past_key_values: Optional[List[torch.FloatTensor]] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
labels: Optional[torch.LongTensor] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
point_clouds: Optional[torch.FloatTensor] = None, |
|
return_dict: Optional[bool] = None, |
|
) -> Union[Tuple, CausalLMOutputWithPast]: |
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions |
|
output_hidden_states = ( |
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states |
|
) |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
|
|
outputs = self.model( |
|
input_ids=input_ids, |
|
attention_mask=attention_mask, |
|
past_key_values=past_key_values, |
|
inputs_embeds=inputs_embeds, |
|
use_cache=use_cache, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
point_clouds=point_clouds |
|
) |
|
|
|
hidden_states = outputs[0] |
|
logits = self.lm_head(hidden_states) |
|
|
|
loss = None |
|
if labels is not None: |
|
|
|
shift_logits = logits[..., :-1, :].contiguous() |
|
shift_labels = labels[..., 1:].contiguous() |
|
|
|
loss_fct = CrossEntropyLoss() |
|
shift_logits = shift_logits.view(-1, self.config.vocab_size) |
|
shift_labels = shift_labels.view(-1) |
|
|
|
shift_labels = shift_labels.to(shift_logits.device) |
|
loss = loss_fct(shift_logits, shift_labels) |
|
|
|
if not return_dict: |
|
output = (logits,) + outputs[1:] |
|
return (loss,) + output if loss is not None else output |
|
|
|
return CausalLMOutputWithPast( |
|
loss=loss, |
|
logits=logits, |
|
past_key_values=outputs.past_key_values, |
|
hidden_states=outputs.hidden_states, |
|
attentions=outputs.attentions, |
|
) |
|
|
|
def prepare_inputs_for_generation( |
|
self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs |
|
): |
|
if past_key_values: |
|
input_ids = input_ids[:, -1:] |
|
|
|
|
|
if inputs_embeds is not None and past_key_values is None: |
|
model_inputs = {"inputs_embeds": inputs_embeds} |
|
else: |
|
model_inputs = {"input_ids": input_ids} |
|
|
|
model_inputs.update( |
|
{ |
|
"past_key_values": past_key_values, |
|
"use_cache": kwargs.get("use_cache"), |
|
"attention_mask": attention_mask, |
|
"point_clouds": kwargs.get("point_clouds", None), |
|
} |
|
) |
|
return model_inputs |
|
|
|
def initialize_tokenizer_point_backbone_config_wo_embedding(self, tokenizer): |
|
|
|
config = self.config |
|
point_backbone_config = self.get_model().point_backbone_config |
|
mm_use_point_start_end = point_backbone_config['mm_use_point_start_end'] = config.mm_use_point_start_end |
|
|
|
default_point_patch_token = config.DEFAULT_POINT_PATCH_TOKEN |
|
|
|
tokenizer.add_tokens([default_point_patch_token], special_tokens=True) |
|
|
|
|
|
point_backbone_config['default_point_patch_token'] = default_point_patch_token |
|
point_backbone_config['point_patch_token'] = tokenizer.convert_tokens_to_ids([default_point_patch_token])[0] |
|
|
|
if mm_use_point_start_end: |
|
default_point_start_token = config.DEFAULT_POINT_START_TOKEN |
|
default_point_end_token = config.DEFAULT_POINT_END_TOKEN |
|
tokenizer.add_tokens([default_point_start_token, default_point_end_token], special_tokens=True) |
|
|
|
point_backbone_config['default_point_start_token'] = default_point_start_token |
|
point_backbone_config['default_point_end_token'] = default_point_end_token |
|
|
|
point_backbone_config["point_start_token"] = tokenizer.convert_tokens_to_ids([default_point_start_token])[0] |
|
point_backbone_config["point_end_token"] = tokenizer.convert_tokens_to_ids([default_point_end_token])[0] |
|
|
|
def initialize_tokenizer_point_backbone_config(self, tokenizer, device, fix_llm=True): |
|
|
|
config = self.config |
|
point_backbone_config = self.get_model().point_backbone_config |
|
mm_use_point_start_end = point_backbone_config['mm_use_point_start_end'] = config.mm_use_point_start_end |
|
|
|
default_point_patch_token = config.DEFAULT_POINT_PATCH_TOKEN |
|
point_backbone_config['default_point_patch_token'] = default_point_patch_token |
|
tokenizer.add_tokens([default_point_patch_token], special_tokens=True) |
|
self.resize_token_embeddings(len(tokenizer)) |
|
point_backbone_config['point_patch_token'] = tokenizer.convert_tokens_to_ids([default_point_patch_token])[0] |
|
|
|
if mm_use_point_start_end: |
|
default_point_start_token = config.DEFAULT_POINT_START_TOKEN |
|
default_point_end_token = config.DEFAULT_POINT_END_TOKEN |
|
point_backbone_config['default_point_start_token'] = default_point_start_token |
|
point_backbone_config['default_point_end_token'] = default_point_end_token |
|
|
|
num_new_tokens = tokenizer.add_tokens([default_point_start_token, default_point_end_token], special_tokens=True) |
|
self.resize_token_embeddings(len(tokenizer)) |
|
point_backbone_config["point_start_token"] = tokenizer.convert_tokens_to_ids([default_point_start_token])[0] |
|
point_backbone_config["point_end_token"] = tokenizer.convert_tokens_to_ids([default_point_end_token])[0] |
|
|
|
if num_new_tokens > 0: |
|
input_embeddings = self.get_input_embeddings().weight.data |
|
output_embeddings = self.get_output_embeddings().weight.data |
|
|
|
input_embeddings_avg = input_embeddings[:-num_new_tokens].mean( |
|
dim=0, keepdim=True) |
|
output_embeddings_avg = output_embeddings[:-num_new_tokens].mean( |
|
dim=0, keepdim=True) |
|
|
|
input_embeddings[-num_new_tokens:] = input_embeddings_avg |
|
output_embeddings[-num_new_tokens:] = output_embeddings_avg |
|
|
|
|
|
for p in self.get_input_embeddings().parameters(): |
|
p.requires_grad = True |
|
if fix_llm: |
|
self.get_model().orig_embeds_params = [self.get_input_embeddings().weight.data.clone().to(device=device)] |
|
for p in self.get_output_embeddings().parameters(): |
|
p.requires_grad = False |
|
print(f"Setting output embeddings fixed and {num_new_tokens} new tokens' input embeddings trainable.") |
|
else: |
|
self.get_model().orig_embeds_params = None |
|
for p in self.get_output_embeddings().parameters(): |
|
p.requires_grad = True |
|
print("Setting output embeddings and all input embeddings trainable.") |
|
|
|
AutoConfig.register("pointllm", PointLLMConfig) |
|
AutoModelForCausalLM.register(PointLLMConfig, PointLLMLlamaForCausalLM) |
|
|