|
import torch |
|
import torch.nn as nn |
|
from timm.models.layers import DropPath |
|
from .dvae import Group |
|
from .dvae import Encoder |
|
from .logger import print_log |
|
from collections import OrderedDict |
|
|
|
from .checkpoint import get_missing_parameters_message, get_unexpected_parameters_message |
|
|
|
class Mlp(nn.Module): |
|
def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.): |
|
super().__init__() |
|
out_features = out_features or in_features |
|
hidden_features = hidden_features or in_features |
|
self.fc1 = nn.Linear(in_features, hidden_features) |
|
self.act = act_layer() |
|
self.fc2 = nn.Linear(hidden_features, out_features) |
|
self.drop = nn.Dropout(drop) |
|
|
|
def forward(self, x): |
|
x = self.fc1(x) |
|
x = self.act(x) |
|
x = self.drop(x) |
|
x = self.fc2(x) |
|
x = self.drop(x) |
|
return x |
|
|
|
|
|
class Attention(nn.Module): |
|
def __init__(self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0.): |
|
super().__init__() |
|
self.num_heads = num_heads |
|
head_dim = dim // num_heads |
|
|
|
self.scale = qk_scale or head_dim ** -0.5 |
|
|
|
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) |
|
self.attn_drop = nn.Dropout(attn_drop) |
|
self.proj = nn.Linear(dim, dim) |
|
self.proj_drop = nn.Dropout(proj_drop) |
|
|
|
def forward(self, x): |
|
B, N, C = x.shape |
|
qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4) |
|
q, k, v = qkv[0], qkv[1], qkv[2] |
|
|
|
attn = (q @ k.transpose(-2, -1)) * self.scale |
|
attn = attn.softmax(dim=-1) |
|
attn = self.attn_drop(attn) |
|
|
|
x = (attn @ v).transpose(1, 2).reshape(B, N, C) |
|
x = self.proj(x) |
|
x = self.proj_drop(x) |
|
return x |
|
|
|
|
|
class Block(nn.Module): |
|
def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0., |
|
drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm): |
|
super().__init__() |
|
self.norm1 = norm_layer(dim) |
|
|
|
|
|
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() |
|
self.norm2 = norm_layer(dim) |
|
mlp_hidden_dim = int(dim * mlp_ratio) |
|
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop) |
|
|
|
self.attn = Attention( |
|
dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop) |
|
|
|
def forward(self, x): |
|
x = x + self.drop_path(self.attn(self.norm1(x))) |
|
x = x + self.drop_path(self.mlp(self.norm2(x))) |
|
return x |
|
|
|
|
|
class TransformerEncoder(nn.Module): |
|
""" Transformer Encoder without hierarchical structure |
|
""" |
|
|
|
def __init__(self, embed_dim=768, depth=4, num_heads=12, mlp_ratio=4., qkv_bias=False, qk_scale=None, |
|
drop_rate=0., attn_drop_rate=0., drop_path_rate=0.): |
|
super().__init__() |
|
|
|
self.blocks = nn.ModuleList([ |
|
Block( |
|
dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale, |
|
drop=drop_rate, attn_drop=attn_drop_rate, |
|
drop_path=drop_path_rate[i] if isinstance(drop_path_rate, list) else drop_path_rate |
|
) |
|
for i in range(depth)]) |
|
|
|
def forward(self, x, pos): |
|
for _, block in enumerate(self.blocks): |
|
x = block(x + pos) |
|
return x |
|
|
|
|
|
class PointTransformer(nn.Module): |
|
def __init__(self, config, use_max_pool=True): |
|
super().__init__() |
|
self.config = config |
|
|
|
self.use_max_pool = use_max_pool |
|
|
|
self.trans_dim = config.trans_dim |
|
self.depth = config.depth |
|
self.drop_path_rate = config.drop_path_rate |
|
self.cls_dim = config.cls_dim |
|
self.num_heads = config.num_heads |
|
|
|
self.group_size = config.group_size |
|
self.num_group = config.num_group |
|
self.point_dims = config.point_dims |
|
|
|
self.group_divider = Group(num_group=self.num_group, group_size=self.group_size) |
|
|
|
self.encoder_dims = config.encoder_dims |
|
self.encoder = Encoder(encoder_channel=self.encoder_dims, point_input_dims=self.point_dims) |
|
|
|
self.reduce_dim = nn.Linear(self.encoder_dims, self.trans_dim) |
|
|
|
self.cls_token = nn.Parameter(torch.zeros(1, 1, self.trans_dim)) |
|
self.cls_pos = nn.Parameter(torch.randn(1, 1, self.trans_dim)) |
|
|
|
self.pos_embed = nn.Sequential( |
|
nn.Linear(3, 128), |
|
nn.GELU(), |
|
nn.Linear(128, self.trans_dim) |
|
) |
|
|
|
dpr = [x.item() for x in torch.linspace(0, self.drop_path_rate, self.depth)] |
|
self.blocks = TransformerEncoder( |
|
embed_dim=self.trans_dim, |
|
depth=self.depth, |
|
drop_path_rate=dpr, |
|
num_heads=self.num_heads |
|
) |
|
|
|
self.norm = nn.LayerNorm(self.trans_dim) |
|
|
|
def load_checkpoint(self, bert_ckpt_path): |
|
ckpt = torch.load(bert_ckpt_path, map_location='cpu') |
|
state_dict = OrderedDict() |
|
for k, v in ckpt['state_dict'].items(): |
|
if k.startswith('module.point_encoder.'): |
|
state_dict[k.replace('module.point_encoder.', '')] = v |
|
|
|
incompatible = self.load_state_dict(state_dict, strict=False) |
|
|
|
if incompatible.missing_keys: |
|
print_log('missing_keys', logger='Transformer') |
|
print_log( |
|
get_missing_parameters_message(incompatible.missing_keys), |
|
logger='Transformer' |
|
) |
|
if incompatible.unexpected_keys: |
|
print_log('unexpected_keys', logger='Transformer') |
|
print_log( |
|
get_unexpected_parameters_message(incompatible.unexpected_keys), |
|
logger='Transformer' |
|
) |
|
if not incompatible.missing_keys and not incompatible.unexpected_keys: |
|
|
|
print_log("PointBERT's weights are successfully loaded from {}".format(bert_ckpt_path), logger='Transformer') |
|
|
|
def forward(self, pts): |
|
|
|
neighborhood, center = self.group_divider(pts) |
|
|
|
group_input_tokens = self.encoder(neighborhood) |
|
group_input_tokens = self.reduce_dim(group_input_tokens) |
|
|
|
cls_tokens = self.cls_token.expand(group_input_tokens.size(0), -1, -1) |
|
cls_pos = self.cls_pos.expand(group_input_tokens.size(0), -1, -1) |
|
|
|
pos = self.pos_embed(center) |
|
|
|
x = torch.cat((cls_tokens, group_input_tokens), dim=1) |
|
pos = torch.cat((cls_pos, pos), dim=1) |
|
|
|
x = self.blocks(x, pos) |
|
x = self.norm(x) |
|
if not self.use_max_pool: |
|
return x |
|
concat_f = torch.cat([x[:, 0], x[:, 1:].max(1)[0]], dim=-1).unsqueeze(1) |
|
return concat_f |