Spaces:
Runtime error
Runtime error
import torch | |
from torch import nn | |
from torchvision.ops import DeformConv2d | |
from .attention import (SpatialTransformer, | |
OffsetRefStrucInter, | |
ChannelAttnBlock) | |
from .resnet import (Downsample2D, | |
ResnetBlock2D, | |
Upsample2D) | |
def get_down_block( | |
down_block_type, | |
num_layers, | |
in_channels, | |
out_channels, | |
temb_channels, | |
add_downsample, | |
resnet_eps, | |
resnet_act_fn, | |
attn_num_head_channels, | |
resnet_groups=None, | |
cross_attention_dim=None, | |
downsample_padding=None, | |
channel_attn=False, | |
content_channel=32, | |
reduction=32): | |
down_block_type = down_block_type[7:] if down_block_type.startswith("UNetRes") else down_block_type | |
if down_block_type == "DownBlock2D": | |
return DownBlock2D( | |
num_layers=num_layers, | |
in_channels=in_channels, | |
out_channels=out_channels, | |
temb_channels=temb_channels, | |
add_downsample=add_downsample, | |
resnet_eps=resnet_eps, | |
resnet_act_fn=resnet_act_fn, | |
resnet_groups=resnet_groups, | |
downsample_padding=downsample_padding) | |
elif down_block_type == "MCADownBlock2D": | |
if cross_attention_dim is None: | |
raise ValueError("cross_attention_dim must be specified for CrossAttnDownBlock2D") | |
return MCADownBlock2D( | |
num_layers=num_layers, | |
in_channels=in_channels, | |
out_channels=out_channels, | |
channel_attn=channel_attn, | |
temb_channels=temb_channels, | |
add_downsample=add_downsample, | |
resnet_eps=resnet_eps, | |
resnet_act_fn=resnet_act_fn, | |
resnet_groups=resnet_groups, | |
downsample_padding=downsample_padding, | |
cross_attention_dim=cross_attention_dim, | |
attn_num_head_channels=attn_num_head_channels, | |
content_channel=content_channel, | |
reduction=reduction) | |
else: | |
raise ValueError(f"{down_block_type} does not exist.") | |
def get_up_block( | |
up_block_type, | |
num_layers, | |
in_channels, | |
out_channels, | |
prev_output_channel, | |
temb_channels, | |
add_upsample, | |
resnet_eps, | |
resnet_act_fn, | |
attn_num_head_channels, | |
upblock_index, | |
resnet_groups=None, | |
cross_attention_dim=None, | |
structure_feature_begin=64): | |
up_block_type = up_block_type[7:] if up_block_type.startswith("UNetRes") else up_block_type | |
if up_block_type == "UpBlock2D": | |
return UpBlock2D( | |
num_layers=num_layers, | |
in_channels=in_channels, | |
out_channels=out_channels, | |
prev_output_channel=prev_output_channel, | |
temb_channels=temb_channels, | |
add_upsample=add_upsample, | |
resnet_eps=resnet_eps, | |
resnet_act_fn=resnet_act_fn, | |
resnet_groups=resnet_groups) | |
elif up_block_type == "StyleRSIUpBlock2D": | |
return StyleRSIUpBlock2D( | |
num_layers=num_layers, | |
in_channels=in_channels, | |
out_channels=out_channels, | |
prev_output_channel=prev_output_channel, | |
temb_channels=temb_channels, | |
add_upsample=add_upsample, | |
resnet_eps=resnet_eps, | |
resnet_act_fn=resnet_act_fn, | |
resnet_groups=resnet_groups, | |
cross_attention_dim=cross_attention_dim, | |
attn_num_head_channels=attn_num_head_channels, | |
structure_feature_begin=structure_feature_begin, | |
upblock_index=upblock_index) | |
else: | |
raise ValueError(f"{up_block_type} does not exist.") | |
class UNetMidMCABlock2D(nn.Module): | |
def __init__( | |
self, | |
in_channels: int, | |
temb_channels: int, | |
channel_attn: bool = False, | |
dropout: float = 0.0, | |
num_layers: int = 1, | |
resnet_eps: float = 1e-6, | |
resnet_time_scale_shift: str = "default", | |
resnet_act_fn: str = "swish", | |
resnet_groups: int = 32, | |
resnet_pre_norm: bool = True, | |
attn_num_head_channels=1, | |
attention_type="default", | |
output_scale_factor=1.0, | |
cross_attention_dim=1280, | |
content_channel=256, | |
reduction=32, | |
**kwargs, | |
): | |
super().__init__() | |
self.attention_type = attention_type | |
self.attn_num_head_channels = attn_num_head_channels | |
resnet_groups = resnet_groups if resnet_groups is not None else min(in_channels // 4, 32) | |
resnets = [ | |
ResnetBlock2D( | |
in_channels=in_channels, | |
out_channels=in_channels, | |
temb_channels=temb_channels, | |
eps=resnet_eps, | |
groups=resnet_groups, | |
dropout=dropout, | |
time_embedding_norm=resnet_time_scale_shift, | |
non_linearity=resnet_act_fn, | |
output_scale_factor=output_scale_factor, | |
pre_norm=resnet_pre_norm, | |
) | |
] | |
content_attentions = [] | |
style_attentions = [] | |
for _ in range(num_layers): | |
content_attentions.append( | |
ChannelAttnBlock( | |
in_channels=in_channels + content_channel, | |
out_channels=in_channels, | |
non_linearity=resnet_act_fn, | |
channel_attn=channel_attn, | |
reduction=reduction, | |
) | |
) | |
style_attentions.append( | |
SpatialTransformer( | |
in_channels, | |
attn_num_head_channels, | |
in_channels // attn_num_head_channels, | |
depth=1, | |
context_dim=cross_attention_dim, | |
num_groups=resnet_groups, | |
) | |
) | |
resnets.append( | |
ResnetBlock2D( | |
in_channels=in_channels, | |
out_channels=in_channels, | |
temb_channels=temb_channels, | |
eps=resnet_eps, | |
groups=resnet_groups, | |
dropout=dropout, | |
time_embedding_norm=resnet_time_scale_shift, | |
non_linearity=resnet_act_fn, | |
output_scale_factor=output_scale_factor, | |
pre_norm=resnet_pre_norm, | |
) | |
) | |
self.content_attentions = nn.ModuleList(content_attentions) | |
self.style_attentions = nn.ModuleList(style_attentions) | |
self.resnets = nn.ModuleList(resnets) | |
def forward( | |
self, | |
hidden_states, | |
temb=None, | |
encoder_hidden_states=None, | |
index=None, | |
): | |
hidden_states = self.resnets[0](hidden_states, temb) | |
for content_attn, style_attn, resnet in zip(self.content_attentions, self.style_attentions, self.resnets[1:]): | |
# content | |
current_content_feature = encoder_hidden_states[1][index] | |
hidden_states = content_attn(hidden_states, current_content_feature) | |
# t_embed | |
hidden_states = resnet(hidden_states, temb) | |
# style | |
current_style_feature = encoder_hidden_states[0] | |
batch_size, channel, height, width = current_style_feature.shape | |
current_style_feature = current_style_feature.permute(0, 2, 3, 1).reshape(batch_size, height*width, channel) | |
hidden_states = style_attn(hidden_states, context=current_style_feature) | |
return hidden_states | |
class MCADownBlock2D(nn.Module): | |
def __init__( | |
self, | |
in_channels: int, | |
out_channels: int, | |
temb_channels: int, | |
dropout: float = 0.0, | |
channel_attn: bool = False, | |
num_layers: int = 1, | |
resnet_eps: float = 1e-6, | |
resnet_time_scale_shift: str = "default", | |
resnet_act_fn: str = "swish", | |
resnet_groups: int = 32, | |
resnet_pre_norm: bool = True, | |
attn_num_head_channels=1, | |
cross_attention_dim=1280, | |
attention_type="default", | |
output_scale_factor=1.0, | |
downsample_padding=1, | |
add_downsample=True, | |
content_channel=16, | |
reduction=32, | |
): | |
super().__init__() | |
content_attentions = [] | |
resnets = [] | |
style_attentions = [] | |
self.attention_type = attention_type | |
self.attn_num_head_channels = attn_num_head_channels | |
for i in range(num_layers): | |
in_channels = in_channels if i == 0 else out_channels | |
content_attentions.append( | |
ChannelAttnBlock( | |
in_channels=in_channels+content_channel, | |
out_channels=in_channels, | |
groups=resnet_groups, | |
non_linearity=resnet_act_fn, | |
channel_attn=channel_attn, | |
reduction=reduction, | |
) | |
) | |
resnets.append( | |
ResnetBlock2D( | |
in_channels=in_channels, | |
out_channels=out_channels, | |
temb_channels=temb_channels, | |
eps=resnet_eps, | |
groups=resnet_groups, | |
dropout=dropout, | |
time_embedding_norm=resnet_time_scale_shift, | |
non_linearity=resnet_act_fn, | |
output_scale_factor=output_scale_factor, | |
pre_norm=resnet_pre_norm, | |
) | |
) | |
print("The style_attention cross attention dim in Down Block {} layer is {}".format(i+1, cross_attention_dim)) | |
style_attentions.append( | |
SpatialTransformer( | |
out_channels, | |
attn_num_head_channels, | |
out_channels // attn_num_head_channels, | |
depth=1, | |
context_dim=cross_attention_dim, | |
num_groups=resnet_groups, | |
) | |
) | |
self.content_attentions = nn.ModuleList(content_attentions) | |
self.style_attentions = nn.ModuleList(style_attentions) | |
self.resnets = nn.ModuleList(resnets) | |
if num_layers == 1: | |
in_channels = out_channels | |
if add_downsample: | |
self.downsamplers = nn.ModuleList( | |
[ | |
Downsample2D( | |
in_channels, use_conv=True, out_channels=out_channels, padding=downsample_padding, name="op" | |
) | |
] | |
) | |
else: | |
self.downsamplers = None | |
self.gradient_checkpointing = False | |
def forward( | |
self, | |
hidden_states, | |
index, | |
temb=None, | |
encoder_hidden_states=None | |
): | |
output_states = () | |
for content_attn, resnet, style_attn in zip(self.content_attentions, self.resnets, self.style_attentions): | |
# content | |
current_content_feature = encoder_hidden_states[1][index] | |
hidden_states = content_attn(hidden_states, current_content_feature) | |
# t_embed | |
hidden_states = resnet(hidden_states, temb) | |
# style | |
current_style_feature = encoder_hidden_states[0] | |
batch_size, channel, height, width = current_style_feature.shape | |
current_style_feature = current_style_feature.permute(0, 2, 3, 1).reshape(batch_size, height*width, channel) | |
hidden_states = style_attn(hidden_states, context=current_style_feature) | |
output_states += (hidden_states,) | |
if self.downsamplers is not None: | |
for downsampler in self.downsamplers: | |
hidden_states = downsampler(hidden_states) | |
output_states += (hidden_states,) | |
return hidden_states, output_states | |
class DownBlock2D(nn.Module): | |
def __init__( | |
self, | |
in_channels: int, | |
out_channels: int, | |
temb_channels: int, | |
dropout: float = 0.0, | |
num_layers: int = 1, | |
resnet_eps: float = 1e-6, | |
resnet_time_scale_shift: str = "default", | |
resnet_act_fn: str = "swish", | |
resnet_groups: int = 32, | |
resnet_pre_norm: bool = True, | |
output_scale_factor=1.0, | |
add_downsample=True, | |
downsample_padding=1, | |
): | |
super().__init__() | |
resnets = [] | |
for i in range(num_layers): | |
in_channels = in_channels if i == 0 else out_channels | |
resnets.append( | |
ResnetBlock2D( | |
in_channels=in_channels, | |
out_channels=out_channels, | |
temb_channels=temb_channels, | |
eps=resnet_eps, | |
groups=resnet_groups, | |
dropout=dropout, | |
time_embedding_norm=resnet_time_scale_shift, | |
non_linearity=resnet_act_fn, | |
output_scale_factor=output_scale_factor, | |
pre_norm=resnet_pre_norm, | |
) | |
) | |
self.resnets = nn.ModuleList(resnets) | |
if num_layers == 1: | |
in_channels = out_channels | |
if add_downsample: | |
self.downsamplers = nn.ModuleList( | |
[ | |
Downsample2D( | |
in_channels, use_conv=True, out_channels=out_channels, padding=downsample_padding, name="op" | |
) | |
] | |
) | |
else: | |
self.downsamplers = None | |
self.gradient_checkpointing = False | |
def forward(self, hidden_states, temb=None): | |
output_states = () | |
for resnet in self.resnets: | |
if self.training and self.gradient_checkpointing: | |
def create_custom_forward(module): | |
def custom_forward(*inputs): | |
return module(*inputs) | |
return custom_forward | |
hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(resnet), hidden_states, temb) | |
else: | |
hidden_states = resnet(hidden_states, temb) | |
output_states += (hidden_states,) | |
if self.downsamplers is not None: | |
for downsampler in self.downsamplers: | |
hidden_states = downsampler(hidden_states) | |
output_states += (hidden_states,) | |
return hidden_states, output_states | |
class StyleRSIUpBlock2D(nn.Module): | |
def __init__( | |
self, | |
in_channels: int, | |
out_channels: int, | |
prev_output_channel: int, | |
temb_channels: int, | |
dropout: float = 0.0, | |
num_layers: int = 1, | |
resnet_eps: float = 1e-6, | |
resnet_time_scale_shift: str = "default", | |
resnet_act_fn: str = "swish", | |
resnet_groups: int = 32, | |
resnet_pre_norm: bool = True, | |
attn_num_head_channels=1, | |
cross_attention_dim=1280, | |
attention_type="default", | |
output_scale_factor=1.0, | |
downsample_padding=1, | |
structure_feature_begin=64, | |
upblock_index=1, | |
add_upsample=True, | |
): | |
super().__init__() | |
resnets = [] | |
attentions = [] | |
sc_interpreter_offsets = [] | |
dcn_deforms = [] | |
self.attention_type = attention_type | |
self.attn_num_head_channels = attn_num_head_channels | |
self.upblock_index = upblock_index | |
for i in range(num_layers): | |
res_skip_channels = in_channels if (i == num_layers - 1) else out_channels | |
resnet_in_channels = prev_output_channel if i == 0 else out_channels | |
sc_interpreter_offsets.append( | |
OffsetRefStrucInter( | |
res_in_channels=res_skip_channels, | |
style_feat_in_channels=int(structure_feature_begin * 2 / upblock_index), | |
n_heads=attn_num_head_channels, | |
num_groups=resnet_groups, | |
) | |
) | |
dcn_deforms.append( | |
DeformConv2d( | |
in_channels=res_skip_channels, | |
out_channels=res_skip_channels, | |
kernel_size=(3, 3), | |
stride=1, | |
padding=1, | |
dilation=1, | |
) | |
) | |
resnets.append( | |
ResnetBlock2D( | |
in_channels=resnet_in_channels + res_skip_channels, | |
out_channels=out_channels, | |
temb_channels=temb_channels, | |
eps=resnet_eps, | |
groups=resnet_groups, | |
dropout=dropout, | |
time_embedding_norm=resnet_time_scale_shift, | |
non_linearity=resnet_act_fn, | |
output_scale_factor=output_scale_factor, | |
pre_norm=resnet_pre_norm, | |
) | |
) | |
attentions.append( | |
SpatialTransformer( | |
out_channels, | |
attn_num_head_channels, | |
out_channels // attn_num_head_channels, | |
depth=1, | |
context_dim=cross_attention_dim, | |
num_groups=resnet_groups, | |
) | |
) | |
self.sc_interpreter_offsets = nn.ModuleList(sc_interpreter_offsets) | |
self.dcn_deforms = nn.ModuleList(dcn_deforms) | |
self.attentions = nn.ModuleList(attentions) | |
self.resnets = nn.ModuleList(resnets) | |
self.num_layers = num_layers | |
if add_upsample: | |
self.upsamplers = nn.ModuleList([Upsample2D(out_channels, use_conv=True, out_channels=out_channels)]) | |
else: | |
self.upsamplers = None | |
self.gradient_checkpointing = False | |
def set_attention_slice(self, slice_size): | |
if slice_size is not None and self.attn_num_head_channels % slice_size != 0: | |
raise ValueError( | |
f"Make sure slice_size {slice_size} is a divisor of " | |
f"the number of heads used in cross_attention {self.attn_num_head_channels}" | |
) | |
if slice_size is not None and slice_size > self.attn_num_head_channels: | |
raise ValueError( | |
f"Chunk_size {slice_size} has to be smaller or equal to " | |
f"the number of heads used in cross_attention {self.attn_num_head_channels}" | |
) | |
for attn in self.attentions: | |
attn._set_attention_slice(slice_size) | |
self.gradient_checkpointing = False | |
def forward( | |
self, | |
hidden_states, | |
res_hidden_states_tuple, | |
style_structure_features, | |
temb=None, | |
encoder_hidden_states=None, | |
upsample_size=None, | |
): | |
total_offset = 0 | |
style_content_feat = style_structure_features[-self.upblock_index-2] | |
for i, (sc_inter_offset, dcn_deform, resnet, attn) in \ | |
enumerate(zip(self.sc_interpreter_offsets, self.dcn_deforms, self.resnets, self.attentions)): | |
# pop res hidden states | |
res_hidden_states = res_hidden_states_tuple[-1] | |
res_hidden_states_tuple = res_hidden_states_tuple[:-1] | |
# Skip Style Content Interpreter by DCN | |
offset = sc_inter_offset(res_hidden_states, style_content_feat) | |
offset = offset.contiguous() | |
# offset sum | |
offset_sum = torch.mean(torch.abs(offset)) | |
total_offset += offset_sum | |
res_hidden_states = res_hidden_states.contiguous() | |
res_hidden_states = dcn_deform(res_hidden_states, offset) | |
# concat as input | |
hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1) | |
if self.training and self.gradient_checkpointing: | |
def create_custom_forward(module): | |
def custom_forward(*inputs): | |
return module(*inputs) | |
return custom_forward | |
hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(resnet), hidden_states, temb) | |
hidden_states = torch.utils.checkpoint.checkpoint( | |
create_custom_forward(attn), hidden_states, encoder_hidden_states | |
) | |
else: | |
hidden_states = resnet(hidden_states, temb) | |
hidden_states = attn(hidden_states, context=encoder_hidden_states) | |
if self.upsamplers is not None: | |
for upsampler in self.upsamplers: | |
hidden_states = upsampler(hidden_states, upsample_size) | |
offset_out = total_offset / self.num_layers | |
return hidden_states, offset_out | |
class UpBlock2D(nn.Module): | |
def __init__( | |
self, | |
in_channels: int, | |
prev_output_channel: int, | |
out_channels: int, | |
temb_channels: int, | |
dropout: float = 0.0, | |
num_layers: int = 1, | |
resnet_eps: float = 1e-6, | |
resnet_time_scale_shift: str = "default", | |
resnet_act_fn: str = "swish", | |
resnet_groups: int = 32, | |
resnet_pre_norm: bool = True, | |
output_scale_factor=1.0, | |
add_upsample=True, | |
): | |
super().__init__() | |
resnets = [] | |
for i in range(num_layers): | |
res_skip_channels = in_channels if (i == num_layers - 1) else out_channels | |
resnet_in_channels = prev_output_channel if i == 0 else out_channels | |
resnets.append( | |
ResnetBlock2D( | |
in_channels=resnet_in_channels + res_skip_channels, | |
out_channels=out_channels, | |
temb_channels=temb_channels, | |
eps=resnet_eps, | |
groups=resnet_groups, | |
dropout=dropout, | |
time_embedding_norm=resnet_time_scale_shift, | |
non_linearity=resnet_act_fn, | |
output_scale_factor=output_scale_factor, | |
pre_norm=resnet_pre_norm, | |
) | |
) | |
self.resnets = nn.ModuleList(resnets) | |
if add_upsample: | |
self.upsamplers = nn.ModuleList([Upsample2D(out_channels, use_conv=True, out_channels=out_channels)]) | |
else: | |
self.upsamplers = None | |
self.gradient_checkpointing = False | |
def forward(self, hidden_states, res_hidden_states_tuple, temb=None, upsample_size=None): | |
for resnet in self.resnets: | |
# pop res hidden states | |
res_hidden_states = res_hidden_states_tuple[-1] | |
res_hidden_states_tuple = res_hidden_states_tuple[:-1] | |
hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1) | |
if self.training and self.gradient_checkpointing: | |
def create_custom_forward(module): | |
def custom_forward(*inputs): | |
return module(*inputs) | |
return custom_forward | |
hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(resnet), hidden_states, temb) | |
else: | |
hidden_states = resnet(hidden_states, temb) | |
if self.upsamplers is not None: | |
for upsampler in self.upsamplers: | |
hidden_states = upsampler(hidden_states, upsample_size) | |
return hidden_states | |