Spaces:
Build error
Build error
import json | |
import os | |
import random | |
from re import L | |
import traceback | |
from functools import partial | |
import numpy as np | |
from resemblyzer import VoiceEncoder | |
from tqdm import tqdm | |
import utils.commons.single_thread_env # NOQA | |
from utils.audio import librosa_wav2spec | |
from utils.audio.align import get_mel2ph, mel2token_to_dur | |
from utils.audio.cwt import get_lf0_cwt, get_cont_lf0 | |
from utils.audio.pitch.utils import f0_to_coarse | |
from utils.audio.pitch_extractors import extract_pitch_simple | |
from utils.commons.hparams import hparams | |
from utils.commons.indexed_datasets import IndexedDatasetBuilder | |
from utils.commons.multiprocess_utils import multiprocess_run_tqdm | |
from utils.os_utils import remove_file, copy_file | |
np.seterr(divide='ignore', invalid='ignore') | |
class BinarizationError(Exception): | |
pass | |
sentence2graph_parser = None | |
class BaseBinarizer: | |
def __init__(self, processed_data_dir=None): | |
if processed_data_dir is None: | |
processed_data_dir = hparams['processed_data_dir'] | |
self.processed_data_dir = processed_data_dir | |
self.binarization_args = hparams['binarization_args'] | |
self.items = {} | |
self.item_names = [] | |
global sentence2graph_parser | |
from modules.tts.syntaspeech.syntactic_graph_buider import Sentence2GraphParser | |
if hparams['ds_name'] == 'libritts': | |
# Unfortunately, we found when processing libritts with multi-processing will incur pytorch.multiprocessing | |
# so we use single thread with cuda graph builder | |
# it take about 20 hours in a PC with 24-cores-cpu and a RTX2080Ti to process the whole LibriTTS | |
# so run the binarization and take a break! | |
sentence2graph_parser = Sentence2GraphParser("en", use_gpu=True) | |
elif hparams['ds_name'] == 'ljspeech': | |
# use multi-processing, thus gpu is disabled | |
# it takes about 30 minutes for binarization | |
sentence2graph_parser = Sentence2GraphParser("en", use_gpu=False) | |
elif hparams['preprocess_args']['txt_processor'] == 'zh': | |
# use multi-processing, thus gpu is disabled | |
# it takes about 30 minutes for binarization | |
sentence2graph_parser = Sentence2GraphParser("zh", use_gpu=False) | |
else: | |
raise NotImplementedError | |
def load_meta_data(self): | |
processed_data_dir = self.processed_data_dir | |
items_list = json.load(open(f"{processed_data_dir}/metadata.json")) | |
for r in tqdm(items_list, desc='Loading meta data.'): | |
item_name = r['item_name'] | |
self.items[item_name] = r | |
self.item_names.append(item_name) | |
if self.binarization_args['shuffle']: | |
random.seed(1234) | |
random.shuffle(self.item_names) | |
def train_item_names(self): | |
range_ = self._convert_range(self.binarization_args['train_range']) | |
return self.item_names[range_[0]:range_[1]] | |
def valid_item_names(self): | |
range_ = self._convert_range(self.binarization_args['valid_range']) | |
return self.item_names[range_[0]:range_[1]] | |
def test_item_names(self): | |
range_ = self._convert_range(self.binarization_args['test_range']) | |
return self.item_names[range_[0]:range_[1]] | |
def _convert_range(self, range_): | |
if range_[1] == -1: | |
range_[1] = len(self.item_names) | |
return range_ | |
def meta_data(self, prefix): | |
if prefix == 'valid': | |
item_names = self.valid_item_names | |
elif prefix == 'test': | |
item_names = self.test_item_names | |
else: | |
item_names = self.train_item_names | |
for item_name in item_names: | |
yield self.items[item_name] | |
def process(self): | |
self.load_meta_data() | |
os.makedirs(hparams['binary_data_dir'], exist_ok=True) | |
for fn in ['phone_set.json', 'word_set.json', 'spk_map.json']: | |
remove_file(f"{hparams['binary_data_dir']}/{fn}") | |
copy_file(f"{hparams['processed_data_dir']}/{fn}", f"{hparams['binary_data_dir']}/{fn}") | |
if hparams['ds_name'] in ['ljspeech', 'biaobei']: | |
self.process_data('valid') | |
self.process_data('test') | |
self.process_data('train') | |
elif hparams['ds_name'] in ['libritts']: | |
self.process_data_single_processing('valid') | |
self.process_data_single_processing('test') | |
self.process_data_single_processing('train') | |
else: | |
raise NotImplementedError | |
def process_data(self, prefix): | |
data_dir = hparams['binary_data_dir'] | |
builder = IndexedDatasetBuilder(f'{data_dir}/{prefix}') | |
meta_data = list(self.meta_data(prefix)) | |
process_item = partial(self.process_item, binarization_args=self.binarization_args) | |
ph_lengths = [] | |
mel_lengths = [] | |
total_sec = 0 | |
items = [] | |
args = [{'item': item} for item in meta_data] | |
for item_id, item in multiprocess_run_tqdm(process_item, args, desc='Processing data'): | |
if item is not None: | |
items.append(item) | |
if self.binarization_args['with_spk_embed']: | |
args = [{'wav': item['wav']} for item in items] | |
for item_id, spk_embed in multiprocess_run_tqdm( | |
self.get_spk_embed, args, | |
init_ctx_func=lambda wid: {'voice_encoder': VoiceEncoder().cuda()}, num_workers=4, | |
desc='Extracting spk embed'): | |
items[item_id]['spk_embed'] = spk_embed | |
for item in items: | |
if not self.binarization_args['with_wav'] and 'wav' in item: | |
del item['wav'] | |
builder.add_item(item) | |
mel_lengths.append(item['len']) | |
assert item['len'] > 0, (item['item_name'], item['txt'], item['mel2ph']) | |
if 'ph_len' in item: | |
ph_lengths.append(item['ph_len']) | |
total_sec += item['sec'] | |
builder.finalize() | |
np.save(f'{data_dir}/{prefix}_lengths.npy', mel_lengths) | |
if len(ph_lengths) > 0: | |
np.save(f'{data_dir}/{prefix}_ph_lengths.npy', ph_lengths) | |
print(f"| {prefix} total duration: {total_sec:.3f}s") | |
def process_data_single_processing(self, prefix): | |
data_dir = hparams['binary_data_dir'] | |
builder = IndexedDatasetBuilder(f'{data_dir}/{prefix}') | |
meta_data = list(self.meta_data(prefix)) | |
ph_lengths = [] | |
mel_lengths = [] | |
total_sec = 0 | |
items = [] | |
args = [{'item': item} for item in meta_data] | |
for raw_item in tqdm(meta_data): | |
item = self.process_item(raw_item, self.binarization_args) | |
if item is not None: | |
if item['dgl_graph'].num_nodes() != np.array(item['ph2word']).max(): | |
print(f"Skip Item: {item['item_name']} word nodes number incorrect!") | |
continue | |
items.append(item) | |
if self.binarization_args['with_spk_embed']: | |
args = [{'wav': item['wav']} for item in items] | |
for item_id, spk_embed in multiprocess_run_tqdm( | |
self.get_spk_embed, args, | |
init_ctx_func=lambda wid: {'voice_encoder': VoiceEncoder().cuda()}, num_workers=4, | |
desc='Extracting spk embed'): | |
items[item_id]['spk_embed'] = spk_embed | |
for item in items: | |
if not self.binarization_args['with_wav'] and 'wav' in item: | |
del item['wav'] | |
builder.add_item(item) | |
mel_lengths.append(item['len']) | |
assert item['len'] > 0, (item['item_name'], item['txt'], item['mel2ph']) | |
if 'ph_len' in item: | |
ph_lengths.append(item['ph_len']) | |
total_sec += item['sec'] | |
builder.finalize() | |
np.save(f'{data_dir}/{prefix}_lengths.npy', mel_lengths) | |
if len(ph_lengths) > 0: | |
np.save(f'{data_dir}/{prefix}_ph_lengths.npy', ph_lengths) | |
print(f"| {prefix} total duration: {total_sec:.3f}s") | |
def process_item(cls, item, binarization_args): | |
try: | |
item['ph_len'] = len(item['ph_token']) | |
item_name = item['item_name'] | |
wav_fn = item['wav_fn'] | |
wav, mel = cls.process_audio(wav_fn, item, binarization_args) | |
except Exception as e: | |
print(f"| Skip item ({e}) for index error. item_name: {item_name}, wav_fn: {wav_fn}") | |
return None | |
try: | |
n_bos_frames, n_eos_frames = 0, 0 | |
if binarization_args['with_align']: | |
tg_fn = f"{hparams['processed_data_dir']}/mfa_outputs/{item_name}.TextGrid" | |
item['tg_fn'] = tg_fn | |
cls.process_align(tg_fn, item) | |
if binarization_args['trim_eos_bos']: | |
n_bos_frames = item['dur'][0] | |
n_eos_frames = item['dur'][-1] | |
T = len(mel) | |
item['mel'] = mel[n_bos_frames:T - n_eos_frames] | |
item['mel2ph'] = item['mel2ph'][n_bos_frames:T - n_eos_frames] | |
item['mel2word'] = item['mel2word'][n_bos_frames:T - n_eos_frames] | |
item['dur'] = item['dur'][1:-1] | |
item['dur_word'] = item['dur_word'][1:-1] | |
item['len'] = item['mel'].shape[0] | |
item['wav'] = wav[n_bos_frames * hparams['hop_size']:len(wav) - n_eos_frames * hparams['hop_size']] | |
if binarization_args['with_f0']: | |
cls.process_pitch(item, n_bos_frames, n_eos_frames) | |
except BinarizationError as e: | |
print(f"| Skip item ({e}). item_name: {item_name}, wav_fn: {wav_fn}") | |
return None | |
except Exception as e: | |
traceback.print_exc() | |
print(f"| Skip item. item_name: {item_name}, wav_fn: {wav_fn}") | |
return None | |
if item['mel'].shape[0] < 128: | |
print(f"Skip Item: {item['item_name']} Mel-spectrogram is shorter than 128!") | |
return None | |
# fix one bad case of stanza | |
if item['txt'].endswith('yn .'): | |
item['txt'] = item['txt'][:-4]+'y .' | |
try: | |
language = sentence2graph_parser.language | |
if language == 'en': | |
dgl_graph, etypes = sentence2graph_parser.parse(item['txt']) | |
elif language == 'zh': | |
dgl_graph, etypes = sentence2graph_parser.parse(item['txt'], item['word'].split(" "), item['ph_gb_word'].split(" ")) | |
else: | |
raise NotImplementedError | |
item['dgl_graph'] = dgl_graph | |
item['edge_types'] = etypes | |
except: | |
print(f"| Dependency Parsing Error! Skip item. item_name: {item_name}, wav_fn: {wav_fn}") | |
return None | |
return item | |
def process_audio(cls, wav_fn, res, binarization_args): | |
wav2spec_dict = librosa_wav2spec( | |
wav_fn, | |
fft_size=hparams['fft_size'], | |
hop_size=hparams['hop_size'], | |
win_length=hparams['win_size'], | |
num_mels=hparams['audio_num_mel_bins'], | |
fmin=hparams['fmin'], | |
fmax=hparams['fmax'], | |
sample_rate=hparams['audio_sample_rate'], | |
loud_norm=hparams['loud_norm']) | |
mel = wav2spec_dict['mel'] | |
wav = wav2spec_dict['wav'].astype(np.float16) | |
if binarization_args['with_linear']: | |
res['linear'] = wav2spec_dict['linear'] | |
res.update({'mel': mel, 'wav': wav, 'sec': len(wav) / hparams['audio_sample_rate'], 'len': mel.shape[0]}) | |
return wav, mel | |
def process_align(tg_fn, item): | |
ph = item['ph'] | |
mel = item['mel'] | |
ph_token = item['ph_token'] | |
if tg_fn is not None and os.path.exists(tg_fn): | |
mel2ph, dur = get_mel2ph(tg_fn, ph, mel, hparams['hop_size'], hparams['audio_sample_rate'], | |
hparams['binarization_args']['min_sil_duration']) | |
else: | |
raise BinarizationError(f"Align not found") | |
if np.array(mel2ph).max() - 1 >= len(ph_token): | |
raise BinarizationError( | |
f"Align does not match: mel2ph.max() - 1: {np.array(mel2ph).max() - 1}, len(phone_encoded): {len(ph_token)}") | |
item['mel2ph'] = mel2ph | |
item['dur'] = dur | |
ph2word = item['ph2word'] | |
mel2word = [ph2word[p - 1] for p in item['mel2ph']] | |
item['mel2word'] = mel2word # [T_mel] | |
dur_word = mel2token_to_dur(mel2word, len(item['word_token'])) | |
item['dur_word'] = dur_word.tolist() # [T_word] | |
def process_pitch(item, n_bos_frames, n_eos_frames): | |
wav, mel = item['wav'], item['mel'] | |
f0 = extract_pitch_simple(item['wav']) | |
if sum(f0) == 0: | |
raise BinarizationError("Empty f0") | |
assert len(mel) == len(f0), (len(mel), len(f0)) | |
pitch_coarse = f0_to_coarse(f0) | |
item['f0'] = f0 | |
item['pitch'] = pitch_coarse | |
if hparams['binarization_args']['with_f0cwt']: | |
uv, cont_lf0_lpf = get_cont_lf0(f0) | |
logf0s_mean_org, logf0s_std_org = np.mean(cont_lf0_lpf), np.std(cont_lf0_lpf) | |
cont_lf0_lpf_norm = (cont_lf0_lpf - logf0s_mean_org) / logf0s_std_org | |
cwt_spec, scales = get_lf0_cwt(cont_lf0_lpf_norm) | |
item['cwt_spec'] = cwt_spec | |
item['cwt_mean'] = logf0s_mean_org | |
item['cwt_std'] = logf0s_std_org | |
def get_spk_embed(wav, ctx): | |
return ctx['voice_encoder'].embed_utterance(wav.astype(float)) | |
def num_workers(self): | |
return int(os.getenv('N_PROC', hparams.get('N_PROC', os.cpu_count()))) | |