Spaces:
Running
on
Zero
Running
on
Zero
| #!/usr/bin/env python3 | |
| # Copyright (c) 2022-2023, NVIDIA CORPORATION. All rights reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| """Example with multiple models served on single Triton server.""" | |
| import logging | |
| import numpy as np | |
| from pytriton.decorators import batch | |
| from pytriton.model_config import ModelConfig, Tensor | |
| from pytriton.triton import Triton | |
| logger = logging.getLogger("examples.multiple_models_python.server") | |
| logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(name)s: %(message)s") | |
| def _multiply2(multiplicand): | |
| product = multiplicand * 2.0 | |
| return [product] | |
| def _multiply4(multiplicand): | |
| product = multiplicand * 4.0 | |
| return [product] | |
| with Triton() as triton: | |
| logger.info("Loading Multiply2 model") | |
| triton.bind( | |
| model_name="Multiply2", | |
| infer_func=_multiply2, | |
| inputs=[ | |
| Tensor(name="multiplicand", dtype=np.float32, shape=(-1,)), | |
| ], | |
| outputs=[ | |
| Tensor(name="product", dtype=np.float32, shape=(-1,)), | |
| ], | |
| config=ModelConfig(max_batch_size=8), | |
| strict=True, | |
| ) | |
| logger.info("Loading Multiply4 model") | |
| triton.bind( | |
| model_name="Multiply4", | |
| infer_func=_multiply4, | |
| inputs=[ | |
| Tensor(name="multiplicand", dtype=np.float32, shape=(-1,)), | |
| ], | |
| outputs=[ | |
| Tensor(name="product", dtype=np.float32, shape=(-1,)), | |
| ], | |
| config=ModelConfig(max_batch_size=8), | |
| strict=True, | |
| ) | |
| triton.serve() | |