Spaces:
				
			
			
	
			
			
		Running
		
			on 
			
			Zero
	
	
	
			
			
	
	
	
	
		
		
		Running
		
			on 
			
			Zero
	| #!/usr/bin/env python3 | |
| # Copyright (c) 2022-2023, NVIDIA CORPORATION. All rights reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| """Server with simple python model performing adding and subtract operation.""" | |
| import logging | |
| import cupy as cp # pytype: disable=import-error | |
| import numpy as np | |
| from pytriton.decorators import batch | |
| from pytriton.model_config import ModelConfig, Tensor | |
| from pytriton.triton import Triton | |
| LOGGER = logging.getLogger("examples.linear_cupy.server") | |
| logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(name)s: %(message)s") | |
| VECTOR_SIZE = 10 | |
| class LinearModel: | |
| def __init__(self): | |
| self.alpha = 2 | |
| self.beta = cp.arange(VECTOR_SIZE) | |
| def linear(self, **inputs): | |
| u_batch, v_batch = inputs.values() | |
| u_batch_cp, v_batch_cp = cp.asarray(u_batch), cp.asarray(v_batch) | |
| lin = u_batch_cp * self.alpha + v_batch_cp + self.beta | |
| return {"result": cp.asnumpy(lin)} | |
| with Triton() as triton: | |
| LOGGER.info("Loading linear model") | |
| lin_model = LinearModel() | |
| triton.bind( | |
| model_name="Linear", | |
| infer_func=lin_model.linear, | |
| inputs=[ | |
| Tensor(dtype=np.float64, shape=(VECTOR_SIZE,)), | |
| Tensor(dtype=np.float64, shape=(VECTOR_SIZE,)), | |
| ], | |
| outputs=[ | |
| Tensor(name="result", dtype=np.float64, shape=(-1,)), | |
| ], | |
| config=ModelConfig(max_batch_size=128), | |
| strict=True, | |
| ) | |
| LOGGER.info("Serving model") | |
| triton.serve() | |