Spaces:
Running
on
Zero
Running
on
Zero
Refactor run_training function in app.py to return tuples for error and log messages, enhancing clarity in output handling. Update UI to remove user input for models_root, output_dir_base, and dataset_config, which are now resolved at runtime. Implement logic to locate the latest LoRA file for download after training completion.
Browse files
app.py
CHANGED
|
@@ -346,18 +346,15 @@ def run_training(
|
|
| 346 |
control5_uploads: Any,
|
| 347 |
control6_uploads: Any,
|
| 348 |
control7_uploads: Any,
|
| 349 |
-
models_root: str,
|
| 350 |
-
output_dir_base: str,
|
| 351 |
-
dataset_config: str,
|
| 352 |
max_epochs: int,
|
| 353 |
save_every: int,
|
| 354 |
-
) -> Iterable[
|
| 355 |
# Basic validation
|
| 356 |
if not output_name.strip():
|
| 357 |
-
yield "[ERROR] OUTPUT NAME is required."
|
| 358 |
return
|
| 359 |
if not caption.strip():
|
| 360 |
-
yield "[ERROR] CAPTION is required."
|
| 361 |
return
|
| 362 |
|
| 363 |
# Ensure /auto holds helper files expected by the script
|
|
@@ -376,10 +373,10 @@ def run_training(
|
|
| 376 |
# Ingest uploads into dataset folders
|
| 377 |
base_files = _extract_paths(image_uploads)
|
| 378 |
if not base_files:
|
| 379 |
-
yield "[ERROR] No images uploaded for IMAGE_FOLDER."
|
| 380 |
return
|
| 381 |
base_filenames = _copy_uploads(base_files, img_dir)
|
| 382 |
-
yield f"[QIE] Copied {len(base_filenames)} base images to {img_dir}"
|
| 383 |
|
| 384 |
# Prepare control sets
|
| 385 |
control_upload_sets = [
|
|
@@ -408,14 +405,14 @@ def run_training(
|
|
| 408 |
replicated = uploads * len(base_filenames)
|
| 409 |
_copy_uploads(replicated, cdir, rename_to=base_filenames)
|
| 410 |
else:
|
| 411 |
-
yield f"[ERROR] control_{i}: file count {len(uploads)} must be 1 or {len(base_filenames)}."
|
| 412 |
return
|
| 413 |
control_dirs.append(folder_name)
|
| 414 |
any_control = True
|
| 415 |
-
yield f"[QIE] Copied {len(uploads)} control_{i} images to {cdir}"
|
| 416 |
|
| 417 |
if not any_control:
|
| 418 |
-
yield "[ERROR] At least one control folder is required for edit-plus training."
|
| 419 |
return
|
| 420 |
|
| 421 |
# Prepare script with user parameters
|
|
@@ -425,9 +422,15 @@ def run_training(
|
|
| 425 |
]
|
| 426 |
|
| 427 |
# Decide dataset_config path with fallback to runtime auto dir
|
| 428 |
-
|
| 429 |
-
|
| 430 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 431 |
|
| 432 |
tmp_script = _prepare_script(
|
| 433 |
dataset_name=ds_name,
|
|
@@ -435,8 +438,8 @@ def run_training(
|
|
| 435 |
data_root=DATA_ROOT_RUNTIME,
|
| 436 |
image_folder=img_folder_name,
|
| 437 |
control_folders=control_folders,
|
| 438 |
-
models_root=models_root
|
| 439 |
-
output_dir_base=
|
| 440 |
dataset_config=ds_conf,
|
| 441 |
override_max_epochs=max_epochs if max_epochs and max_epochs > 0 else None,
|
| 442 |
override_save_every=save_every if save_every and save_every > 0 else None,
|
|
@@ -445,8 +448,8 @@ def run_training(
|
|
| 445 |
|
| 446 |
|
| 447 |
shell = _pick_shell()
|
| 448 |
-
yield f"[QIE] Using shell: {shell}"
|
| 449 |
-
yield f"[QIE] Running script: {tmp_script}"
|
| 450 |
|
| 451 |
# Run and stream output
|
| 452 |
proc = subprocess.Popen(
|
|
@@ -460,10 +463,26 @@ def run_training(
|
|
| 460 |
try:
|
| 461 |
assert proc.stdout is not None
|
| 462 |
for line in proc.stdout:
|
| 463 |
-
yield line.rstrip("\n")
|
| 464 |
finally:
|
| 465 |
code = proc.wait()
|
| 466 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 467 |
|
| 468 |
|
| 469 |
def build_ui() -> gr.Blocks:
|
|
@@ -500,13 +519,11 @@ def build_ui() -> gr.Blocks:
|
|
| 500 |
with gr.Row():
|
| 501 |
ctrl7_files = gr.File(label="Upload control_7 images", file_count="multiple", type="filepath")
|
| 502 |
|
| 503 |
-
|
| 504 |
-
models_root = gr.Textbox(label="Models root", value=MODELS_ROOT_RUNTIME)
|
| 505 |
-
output_dir_base = gr.Textbox(label="OUTPUT_DIR_BASE", value=DEFAULT_OUTPUT_DIR_BASE)
|
| 506 |
-
dataset_config = gr.Textbox(label="DATASET_CONFIG", value=str(Path(AUTO_DIR_RUNTIME) / "dataset_QIE.toml"))
|
| 507 |
|
| 508 |
run_btn = gr.Button("Start Training", variant="primary")
|
| 509 |
logs = gr.Textbox(label="Logs", lines=20)
|
|
|
|
| 510 |
|
| 511 |
with gr.Row():
|
| 512 |
max_epochs = gr.Number(label="Max epochs (this run)", value=10, precision=0)
|
|
@@ -517,10 +534,9 @@ def build_ui() -> gr.Blocks:
|
|
| 517 |
inputs=[
|
| 518 |
output_name, caption, images_input,
|
| 519 |
ctrl0_files, ctrl1_files, ctrl2_files, ctrl3_files, ctrl4_files, ctrl5_files, ctrl6_files, ctrl7_files,
|
| 520 |
-
models_root, output_dir_base, dataset_config,
|
| 521 |
max_epochs, save_every,
|
| 522 |
],
|
| 523 |
-
outputs=logs,
|
| 524 |
)
|
| 525 |
|
| 526 |
return demo
|
|
|
|
| 346 |
control5_uploads: Any,
|
| 347 |
control6_uploads: Any,
|
| 348 |
control7_uploads: Any,
|
|
|
|
|
|
|
|
|
|
| 349 |
max_epochs: int,
|
| 350 |
save_every: int,
|
| 351 |
+
) -> Iterable[tuple]:
|
| 352 |
# Basic validation
|
| 353 |
if not output_name.strip():
|
| 354 |
+
yield ("[ERROR] OUTPUT NAME is required.", None)
|
| 355 |
return
|
| 356 |
if not caption.strip():
|
| 357 |
+
yield ("[ERROR] CAPTION is required.", None)
|
| 358 |
return
|
| 359 |
|
| 360 |
# Ensure /auto holds helper files expected by the script
|
|
|
|
| 373 |
# Ingest uploads into dataset folders
|
| 374 |
base_files = _extract_paths(image_uploads)
|
| 375 |
if not base_files:
|
| 376 |
+
yield ("[ERROR] No images uploaded for IMAGE_FOLDER.", None)
|
| 377 |
return
|
| 378 |
base_filenames = _copy_uploads(base_files, img_dir)
|
| 379 |
+
yield (f"[QIE] Copied {len(base_filenames)} base images to {img_dir}", None)
|
| 380 |
|
| 381 |
# Prepare control sets
|
| 382 |
control_upload_sets = [
|
|
|
|
| 405 |
replicated = uploads * len(base_filenames)
|
| 406 |
_copy_uploads(replicated, cdir, rename_to=base_filenames)
|
| 407 |
else:
|
| 408 |
+
yield (f"[ERROR] control_{i}: file count {len(uploads)} must be 1 or {len(base_filenames)}.", None)
|
| 409 |
return
|
| 410 |
control_dirs.append(folder_name)
|
| 411 |
any_control = True
|
| 412 |
+
yield (f"[QIE] Copied {len(uploads)} control_{i} images to {cdir}", None)
|
| 413 |
|
| 414 |
if not any_control:
|
| 415 |
+
yield ("[ERROR] At least one control folder is required for edit-plus training.", None)
|
| 416 |
return
|
| 417 |
|
| 418 |
# Prepare script with user parameters
|
|
|
|
| 422 |
]
|
| 423 |
|
| 424 |
# Decide dataset_config path with fallback to runtime auto dir
|
| 425 |
+
ds_conf = str(Path(AUTO_DIR_RUNTIME) / "dataset_QIE.toml")
|
| 426 |
+
|
| 427 |
+
# Resolve models_root and output_dir_base at runtime
|
| 428 |
+
models_root = MODELS_ROOT_RUNTIME
|
| 429 |
+
out_base = os.path.join(AUTO_DIR_RUNTIME, "train_LoRA")
|
| 430 |
+
try:
|
| 431 |
+
os.makedirs(out_base, exist_ok=True)
|
| 432 |
+
except Exception:
|
| 433 |
+
pass
|
| 434 |
|
| 435 |
tmp_script = _prepare_script(
|
| 436 |
dataset_name=ds_name,
|
|
|
|
| 438 |
data_root=DATA_ROOT_RUNTIME,
|
| 439 |
image_folder=img_folder_name,
|
| 440 |
control_folders=control_folders,
|
| 441 |
+
models_root=models_root,
|
| 442 |
+
output_dir_base=out_base,
|
| 443 |
dataset_config=ds_conf,
|
| 444 |
override_max_epochs=max_epochs if max_epochs and max_epochs > 0 else None,
|
| 445 |
override_save_every=save_every if save_every and save_every > 0 else None,
|
|
|
|
| 448 |
|
| 449 |
|
| 450 |
shell = _pick_shell()
|
| 451 |
+
yield (f"[QIE] Using shell: {shell}", None)
|
| 452 |
+
yield (f"[QIE] Running script: {tmp_script}", None)
|
| 453 |
|
| 454 |
# Run and stream output
|
| 455 |
proc = subprocess.Popen(
|
|
|
|
| 463 |
try:
|
| 464 |
assert proc.stdout is not None
|
| 465 |
for line in proc.stdout:
|
| 466 |
+
yield (line.rstrip("\n"), None)
|
| 467 |
finally:
|
| 468 |
code = proc.wait()
|
| 469 |
+
# Try to locate latest LoRA file for download
|
| 470 |
+
lora_path = None
|
| 471 |
+
try:
|
| 472 |
+
out_dir = os.path.join(out_base, output_name.strip())
|
| 473 |
+
if os.path.isdir(out_dir):
|
| 474 |
+
cand = []
|
| 475 |
+
for root, _, files in os.walk(out_dir):
|
| 476 |
+
for fn in files:
|
| 477 |
+
if fn.lower().endswith(".safetensors"):
|
| 478 |
+
full = os.path.join(root, fn)
|
| 479 |
+
cand.append((os.path.getmtime(full), full))
|
| 480 |
+
if cand:
|
| 481 |
+
cand.sort()
|
| 482 |
+
lora_path = cand[-1][1]
|
| 483 |
+
except Exception:
|
| 484 |
+
pass
|
| 485 |
+
yield (f"[QIE] Exit code: {code}", lora_path)
|
| 486 |
|
| 487 |
|
| 488 |
def build_ui() -> gr.Blocks:
|
|
|
|
| 519 |
with gr.Row():
|
| 520 |
ctrl7_files = gr.File(label="Upload control_7 images", file_count="multiple", type="filepath")
|
| 521 |
|
| 522 |
+
# Models root / OUTPUT_DIR_BASE / DATASET_CONFIG are auto-resolved at runtime; no user input needed.
|
|
|
|
|
|
|
|
|
|
| 523 |
|
| 524 |
run_btn = gr.Button("Start Training", variant="primary")
|
| 525 |
logs = gr.Textbox(label="Logs", lines=20)
|
| 526 |
+
lora_file = gr.File(label="Download LoRA", interactive=False)
|
| 527 |
|
| 528 |
with gr.Row():
|
| 529 |
max_epochs = gr.Number(label="Max epochs (this run)", value=10, precision=0)
|
|
|
|
| 534 |
inputs=[
|
| 535 |
output_name, caption, images_input,
|
| 536 |
ctrl0_files, ctrl1_files, ctrl2_files, ctrl3_files, ctrl4_files, ctrl5_files, ctrl6_files, ctrl7_files,
|
|
|
|
| 537 |
max_epochs, save_every,
|
| 538 |
],
|
| 539 |
+
outputs=[logs, lora_file],
|
| 540 |
)
|
| 541 |
|
| 542 |
return demo
|