Spaces:
Sleeping
Sleeping
| from dataclasses import dataclass | |
| import math | |
| import re | |
| from typing import Dict, List, Optional, Union | |
| import torch | |
| import safetensors | |
| from safetensors.torch import load_file | |
| from accelerate import init_empty_weights | |
| from transformers import CLIPTextModel, CLIPTextModelWithProjection, CLIPConfig, CLIPTextConfig | |
| from .utils import setup_logging | |
| setup_logging() | |
| import logging | |
| logger = logging.getLogger(__name__) | |
| from library import sd3_models | |
| # TODO move some of functions to model_util.py | |
| from library import sdxl_model_util | |
| # region models | |
| # TODO remove dependency on flux_utils | |
| from library.utils import load_safetensors | |
| from library.flux_utils import load_t5xxl as flux_utils_load_t5xxl | |
| def analyze_state_dict_state(state_dict: Dict, prefix: str = ""): | |
| logger.info(f"Analyzing state dict state...") | |
| # analyze configs | |
| patch_size = state_dict[f"{prefix}x_embedder.proj.weight"].shape[2] | |
| depth = state_dict[f"{prefix}x_embedder.proj.weight"].shape[0] // 64 | |
| num_patches = state_dict[f"{prefix}pos_embed"].shape[1] | |
| pos_embed_max_size = round(math.sqrt(num_patches)) | |
| adm_in_channels = state_dict[f"{prefix}y_embedder.mlp.0.weight"].shape[1] | |
| context_shape = state_dict[f"{prefix}context_embedder.weight"].shape | |
| qk_norm = "rms" if f"{prefix}joint_blocks.0.context_block.attn.ln_k.weight" in state_dict.keys() else None | |
| # x_block_self_attn_layers.append(int(key.split(".x_block.attn2.ln_k.weight")[0].split(".")[-1])) | |
| x_block_self_attn_layers = [] | |
| re_attn = re.compile(r"\.(\d+)\.x_block\.attn2\.ln_k\.weight") | |
| for key in list(state_dict.keys()): | |
| m = re_attn.search(key) | |
| if m: | |
| x_block_self_attn_layers.append(int(m.group(1))) | |
| context_embedder_in_features = context_shape[1] | |
| context_embedder_out_features = context_shape[0] | |
| # only supports 3-5-large, medium or 3-medium | |
| if qk_norm is not None: | |
| if len(x_block_self_attn_layers) == 0: | |
| model_type = "3-5-large" | |
| else: | |
| model_type = "3-5-medium" | |
| else: | |
| model_type = "3-medium" | |
| params = sd3_models.SD3Params( | |
| patch_size=patch_size, | |
| depth=depth, | |
| num_patches=num_patches, | |
| pos_embed_max_size=pos_embed_max_size, | |
| adm_in_channels=adm_in_channels, | |
| qk_norm=qk_norm, | |
| x_block_self_attn_layers=x_block_self_attn_layers, | |
| context_embedder_in_features=context_embedder_in_features, | |
| context_embedder_out_features=context_embedder_out_features, | |
| model_type=model_type, | |
| ) | |
| logger.info(f"Analyzed state dict state: {params}") | |
| return params | |
| def load_mmdit( | |
| state_dict: Dict, dtype: Optional[Union[str, torch.dtype]], device: Union[str, torch.device], attn_mode: str = "torch" | |
| ) -> sd3_models.MMDiT: | |
| mmdit_sd = {} | |
| mmdit_prefix = "model.diffusion_model." | |
| for k in list(state_dict.keys()): | |
| if k.startswith(mmdit_prefix): | |
| mmdit_sd[k[len(mmdit_prefix) :]] = state_dict.pop(k) | |
| # load MMDiT | |
| logger.info("Building MMDit") | |
| params = analyze_state_dict_state(mmdit_sd) | |
| with init_empty_weights(): | |
| mmdit = sd3_models.create_sd3_mmdit(params, attn_mode) | |
| logger.info("Loading state dict...") | |
| info = mmdit.load_state_dict(mmdit_sd, strict=False, assign=True) | |
| logger.info(f"Loaded MMDiT: {info}") | |
| return mmdit | |
| def load_clip_l( | |
| clip_l_path: Optional[str], | |
| dtype: Optional[Union[str, torch.dtype]], | |
| device: Union[str, torch.device], | |
| disable_mmap: bool = False, | |
| state_dict: Optional[Dict] = None, | |
| ): | |
| clip_l_sd = None | |
| if clip_l_path is None: | |
| if "text_encoders.clip_l.transformer.text_model.embeddings.position_embedding.weight" in state_dict: | |
| # found clip_l: remove prefix "text_encoders.clip_l." | |
| logger.info("clip_l is included in the checkpoint") | |
| clip_l_sd = {} | |
| prefix = "text_encoders.clip_l." | |
| for k in list(state_dict.keys()): | |
| if k.startswith(prefix): | |
| clip_l_sd[k[len(prefix) :]] = state_dict.pop(k) | |
| elif clip_l_path is None: | |
| logger.info("clip_l is not included in the checkpoint and clip_l_path is not provided") | |
| return None | |
| # load clip_l | |
| logger.info("Building CLIP-L") | |
| config = CLIPTextConfig( | |
| vocab_size=49408, | |
| hidden_size=768, | |
| intermediate_size=3072, | |
| num_hidden_layers=12, | |
| num_attention_heads=12, | |
| max_position_embeddings=77, | |
| hidden_act="quick_gelu", | |
| layer_norm_eps=1e-05, | |
| dropout=0.0, | |
| attention_dropout=0.0, | |
| initializer_range=0.02, | |
| initializer_factor=1.0, | |
| pad_token_id=1, | |
| bos_token_id=0, | |
| eos_token_id=2, | |
| model_type="clip_text_model", | |
| projection_dim=768, | |
| # torch_dtype="float32", | |
| # transformers_version="4.25.0.dev0", | |
| ) | |
| with init_empty_weights(): | |
| clip = CLIPTextModelWithProjection(config) | |
| if clip_l_sd is None: | |
| logger.info(f"Loading state dict from {clip_l_path}") | |
| clip_l_sd = load_safetensors(clip_l_path, device=str(device), disable_mmap=disable_mmap, dtype=dtype) | |
| if "text_projection.weight" not in clip_l_sd: | |
| logger.info("Adding text_projection.weight to clip_l_sd") | |
| clip_l_sd["text_projection.weight"] = torch.eye(768, dtype=dtype, device=device) | |
| info = clip.load_state_dict(clip_l_sd, strict=False, assign=True) | |
| logger.info(f"Loaded CLIP-L: {info}") | |
| return clip | |
| def load_clip_g( | |
| clip_g_path: Optional[str], | |
| dtype: Optional[Union[str, torch.dtype]], | |
| device: Union[str, torch.device], | |
| disable_mmap: bool = False, | |
| state_dict: Optional[Dict] = None, | |
| ): | |
| clip_g_sd = None | |
| if state_dict is not None: | |
| if "text_encoders.clip_g.transformer.text_model.embeddings.position_embedding.weight" in state_dict: | |
| # found clip_g: remove prefix "text_encoders.clip_g." | |
| logger.info("clip_g is included in the checkpoint") | |
| clip_g_sd = {} | |
| prefix = "text_encoders.clip_g." | |
| for k in list(state_dict.keys()): | |
| if k.startswith(prefix): | |
| clip_g_sd[k[len(prefix) :]] = state_dict.pop(k) | |
| elif clip_g_path is None: | |
| logger.info("clip_g is not included in the checkpoint and clip_g_path is not provided") | |
| return None | |
| # load clip_g | |
| logger.info("Building CLIP-G") | |
| config = CLIPTextConfig( | |
| vocab_size=49408, | |
| hidden_size=1280, | |
| intermediate_size=5120, | |
| num_hidden_layers=32, | |
| num_attention_heads=20, | |
| max_position_embeddings=77, | |
| hidden_act="gelu", | |
| layer_norm_eps=1e-05, | |
| dropout=0.0, | |
| attention_dropout=0.0, | |
| initializer_range=0.02, | |
| initializer_factor=1.0, | |
| pad_token_id=1, | |
| bos_token_id=0, | |
| eos_token_id=2, | |
| model_type="clip_text_model", | |
| projection_dim=1280, | |
| # torch_dtype="float32", | |
| # transformers_version="4.25.0.dev0", | |
| ) | |
| with init_empty_weights(): | |
| clip = CLIPTextModelWithProjection(config) | |
| if clip_g_sd is None: | |
| logger.info(f"Loading state dict from {clip_g_path}") | |
| clip_g_sd = load_safetensors(clip_g_path, device=str(device), disable_mmap=disable_mmap, dtype=dtype) | |
| info = clip.load_state_dict(clip_g_sd, strict=False, assign=True) | |
| logger.info(f"Loaded CLIP-G: {info}") | |
| return clip | |
| def load_t5xxl( | |
| t5xxl_path: Optional[str], | |
| dtype: Optional[Union[str, torch.dtype]], | |
| device: Union[str, torch.device], | |
| disable_mmap: bool = False, | |
| state_dict: Optional[Dict] = None, | |
| ): | |
| t5xxl_sd = None | |
| if state_dict is not None: | |
| if "text_encoders.t5xxl.transformer.encoder.block.0.layer.0.SelfAttention.k.weight" in state_dict: | |
| # found t5xxl: remove prefix "text_encoders.t5xxl." | |
| logger.info("t5xxl is included in the checkpoint") | |
| t5xxl_sd = {} | |
| prefix = "text_encoders.t5xxl." | |
| for k in list(state_dict.keys()): | |
| if k.startswith(prefix): | |
| t5xxl_sd[k[len(prefix) :]] = state_dict.pop(k) | |
| elif t5xxl_path is None: | |
| logger.info("t5xxl is not included in the checkpoint and t5xxl_path is not provided") | |
| return None | |
| return flux_utils_load_t5xxl(t5xxl_path, dtype, device, disable_mmap, state_dict=t5xxl_sd) | |
| def load_vae( | |
| vae_path: Optional[str], | |
| vae_dtype: Optional[Union[str, torch.dtype]], | |
| device: Optional[Union[str, torch.device]], | |
| disable_mmap: bool = False, | |
| state_dict: Optional[Dict] = None, | |
| ): | |
| vae_sd = {} | |
| if vae_path: | |
| logger.info(f"Loading VAE from {vae_path}...") | |
| vae_sd = load_safetensors(vae_path, device, disable_mmap) | |
| else: | |
| # remove prefix "first_stage_model." | |
| vae_sd = {} | |
| vae_prefix = "first_stage_model." | |
| for k in list(state_dict.keys()): | |
| if k.startswith(vae_prefix): | |
| vae_sd[k[len(vae_prefix) :]] = state_dict.pop(k) | |
| logger.info("Building VAE") | |
| vae = sd3_models.SDVAE(vae_dtype, device) | |
| logger.info("Loading state dict...") | |
| info = vae.load_state_dict(vae_sd) | |
| logger.info(f"Loaded VAE: {info}") | |
| vae.to(device=device, dtype=vae_dtype) # make sure it's in the right device and dtype | |
| return vae | |
| # endregion | |
| class ModelSamplingDiscreteFlow: | |
| """Helper for sampler scheduling (ie timestep/sigma calculations) for Discrete Flow models""" | |
| def __init__(self, shift=1.0): | |
| self.shift = shift | |
| timesteps = 1000 | |
| self.sigmas = self.sigma(torch.arange(1, timesteps + 1, 1)) | |
| def sigma_min(self): | |
| return self.sigmas[0] | |
| def sigma_max(self): | |
| return self.sigmas[-1] | |
| def timestep(self, sigma): | |
| return sigma * 1000 | |
| def sigma(self, timestep: torch.Tensor): | |
| timestep = timestep / 1000.0 | |
| if self.shift == 1.0: | |
| return timestep | |
| return self.shift * timestep / (1 + (self.shift - 1) * timestep) | |
| def calculate_denoised(self, sigma, model_output, model_input): | |
| sigma = sigma.view(sigma.shape[:1] + (1,) * (model_output.ndim - 1)) | |
| return model_input - model_output * sigma | |
| def noise_scaling(self, sigma, noise, latent_image, max_denoise=False): | |
| # assert max_denoise is False, "max_denoise not implemented" | |
| # max_denoise is always True, I'm not sure why it's there | |
| return sigma * noise + (1.0 - sigma) * latent_image | |