Spaces:
Sleeping
Sleeping
| import gradio as gr | |
| from matplotlib import gridspec | |
| import matplotlib.pyplot as plt | |
| import numpy as np | |
| from PIL import Image | |
| import tensorflow as tf | |
| from transformers import SegformerFeatureExtractor, TFSegformerForSemanticSegmentation | |
| feature_extractor = SegformerFeatureExtractor.from_pretrained( | |
| "nvidia/segformer-b2-finetuned-ade-512-512" | |
| ) | |
| model = TFSegformerForSemanticSegmentation.from_pretrained( | |
| "nvidia/segformer-b2-finetuned-ade-512-512" | |
| ) | |
| def ade_palette(): | |
| """ADE20K palette that maps each class to RGB values.""" | |
| return [ | |
| [204, 87, 92], | |
| [112, 185, 212], | |
| [45, 189, 106], | |
| [234, 123, 67], | |
| [78, 56, 123], | |
| [210, 32, 89], | |
| [90, 180, 56], | |
| [155, 102, 200], | |
| [33, 147, 176], | |
| [255, 183, 76], | |
| [67, 123, 89], | |
| [190, 60, 45], | |
| [134, 112, 200], | |
| [56, 45, 189], | |
| [200, 56, 123], | |
| [87, 92, 204], | |
| [120, 56, 123], | |
| [45, 78, 123], | |
| [156, 200, 56], | |
| [32, 90, 210], | |
| [56, 123, 67], | |
| [180, 56, 123], | |
| [123, 67, 45], | |
| [45, 134, 200], | |
| [67, 56, 123], | |
| [78, 123, 67], | |
| [32, 210, 90], | |
| [45, 56, 189], | |
| [123, 56, 123], | |
| [56, 156, 200], | |
| [189, 56, 45], | |
| [112, 200, 56], | |
| [56, 123, 45], | |
| [200, 32, 90], | |
| [123, 45, 78], | |
| [200, 156, 56], | |
| [45, 67, 123], | |
| [56, 45, 78], | |
| [45, 56, 123], | |
| [123, 67, 56], | |
| [56, 78, 123], | |
| [210, 90, 32], | |
| [123, 56, 189], | |
| [45, 200, 134], | |
| [67, 123, 56], | |
| [123, 45, 67], | |
| [90, 32, 210], | |
| [200, 45, 78], | |
| [32, 210, 90], | |
| [45, 123, 67], | |
| [165, 42, 87], | |
| [72, 145, 167], | |
| [15, 158, 75], | |
| [209, 89, 40], | |
| [32, 21, 121], | |
| [184, 20, 100], | |
| [56, 135, 15], | |
| [128, 92, 176], | |
| [1, 119, 140], | |
| [220, 151, 43], | |
| [41, 97, 72], | |
| [148, 38, 27], | |
| [107, 86, 176], | |
| [21, 26, 136], | |
| [174, 27, 90], | |
| [91, 96, 204], | |
| [108, 50, 107], | |
| [27, 45, 136], | |
| [168, 200, 52], | |
| [7, 102, 27], | |
| [42, 93, 56], | |
| [140, 52, 112], | |
| [92, 107, 168], | |
| [17, 118, 176], | |
| [59, 50, 174], | |
| [206, 40, 143], | |
| [44, 19, 142], | |
| [23, 168, 75], | |
| [54, 57, 189], | |
| [144, 21, 15], | |
| [15, 176, 35], | |
| [107, 19, 79], | |
| [204, 52, 114], | |
| [48, 173, 83], | |
| [11, 120, 53], | |
| [206, 104, 28], | |
| [20, 31, 153], | |
| [27, 21, 93], | |
| [11, 206, 138], | |
| [112, 30, 83], | |
| [68, 91, 152], | |
| [153, 13, 43], | |
| [25, 114, 54], | |
| [92, 27, 150], | |
| [108, 42, 59], | |
| [194, 77, 5], | |
| [145, 48, 83], | |
| [7, 113, 19], | |
| [25, 92, 113], | |
| [60, 168, 79], | |
| [78, 33, 120], | |
| [89, 176, 205], | |
| [27, 200, 94], | |
| [210, 67, 23], | |
| [123, 89, 189], | |
| [225, 56, 112], | |
| [75, 156, 45], | |
| [172, 104, 200], | |
| [15, 170, 197], | |
| [240, 133, 65], | |
| [89, 156, 112], | |
| [214, 88, 57], | |
| [156, 134, 200], | |
| [78, 57, 189], | |
| [200, 78, 123], | |
| [106, 120, 210], | |
| [145, 56, 112], | |
| [89, 120, 189], | |
| [185, 206, 56], | |
| [47, 99, 28], | |
| [112, 189, 78], | |
| [200, 112, 89], | |
| [89, 145, 112], | |
| [78, 106, 189], | |
| [112, 78, 189], | |
| [156, 112, 78], | |
| [28, 210, 99], | |
| [78, 89, 189], | |
| [189, 78, 57], | |
| [112, 200, 78], | |
| [189, 47, 78], | |
| [205, 112, 57], | |
| [78, 145, 57], | |
| [200, 78, 112], | |
| [99, 89, 145], | |
| [200, 156, 78], | |
| [57, 78, 145], | |
| [78, 57, 99], | |
| [57, 78, 145], | |
| [145, 112, 78], | |
| [78, 89, 145], | |
| [210, 99, 28], | |
| [145, 78, 189], | |
| [57, 200, 136], | |
| [89, 156, 78], | |
| [145, 78, 99], | |
| [99, 28, 210], | |
| [189, 78, 47], | |
| [28, 210, 99], | |
| [78, 145, 57], | |
| ] | |
| labels_list = [] | |
| with open(r'labels.txt', 'r') as fp: | |
| for line in fp: | |
| labels_list.append(line[:-1]) | |
| colormap = np.asarray(ade_palette()) | |
| def label_to_color_image(label): | |
| if label.ndim != 2: | |
| raise ValueError("Expect 2-D input label") | |
| if np.max(label) >= len(colormap): | |
| raise ValueError("label value too large.") | |
| return colormap[label] | |
| def draw_plot(pred_img, seg): | |
| fig = plt.figure(figsize=(20, 15)) | |
| grid_spec = gridspec.GridSpec(1, 2, width_ratios=[6, 1]) | |
| plt.subplot(grid_spec[0]) | |
| plt.imshow(pred_img) | |
| plt.axis('off') | |
| LABEL_NAMES = np.asarray(labels_list) | |
| FULL_LABEL_MAP = np.arange(len(LABEL_NAMES)).reshape(len(LABEL_NAMES), 1) | |
| FULL_COLOR_MAP = label_to_color_image(FULL_LABEL_MAP) | |
| unique_labels = np.unique(seg.numpy().astype("uint8")) | |
| ax = plt.subplot(grid_spec[1]) | |
| plt.imshow(FULL_COLOR_MAP[unique_labels].astype(np.uint8), interpolation="nearest") | |
| ax.yaxis.tick_right() | |
| plt.yticks(range(len(unique_labels)), LABEL_NAMES[unique_labels]) | |
| plt.xticks([], []) | |
| ax.tick_params(width=0.0, labelsize=25) | |
| return fig | |
| def sepia(input_img): | |
| input_img = Image.fromarray(input_img) | |
| inputs = feature_extractor(images=input_img, return_tensors="tf") | |
| outputs = model(**inputs) | |
| logits = outputs.logits | |
| logits = tf.transpose(logits, [0, 2, 3, 1]) | |
| logits = tf.image.resize( | |
| logits, input_img.size[::-1] | |
| ) # We reverse the shape of `image` because `image.size` returns width and height. | |
| seg = tf.math.argmax(logits, axis=-1)[0] | |
| color_seg = np.zeros( | |
| (seg.shape[0], seg.shape[1], 3), dtype=np.uint8 | |
| ) # height, width, 3 | |
| for label, color in enumerate(colormap): | |
| color_seg[seg.numpy() == label, :] = color | |
| # Show image + mask | |
| pred_img = np.array(input_img) * 0.5 + color_seg * 0.5 | |
| pred_img = pred_img.astype(np.uint8) | |
| fig = draw_plot(pred_img, seg) | |
| return fig | |
| demo = gr.Interface(fn=sepia, | |
| inputs=gr.Image(shape=(400, 600)), | |
| outputs=['plot'], | |
| examples=["island.jpeg", "mountain.jpeg", "pond.jpeg"], | |
| allow_flagging='never') | |
| demo.launch() |