Spaces:
Runtime error
Runtime error
import streamlit as st | |
from collections import defaultdict | |
import tqdm | |
import transformers | |
from transformers import AutoTokenizer | |
import pandas as pd | |
import matplotlib.pyplot as plt | |
import seaborn as sns | |
import numpy as np | |
import plotly.figure_factory as ff | |
import plotly.express as px | |
import random | |
def load_data(): | |
return pd.read_csv('MassiveDatasetValidationData.csv') | |
def reload_example_text_data(): | |
random_id = random.choice(val_data['id']) | |
tempdf = subset_df[subset_df['id']==random_id] | |
tempdf.rename(columns={'lang': 'Language'}, inplace=True) | |
tempdf.set_index('Language', inplace=True) | |
tempdf = tempdf[['iso', 'text', tokenizer_name]] | |
tempdf.columns=['ISO', 'Text', 'Num Tokens'] | |
tempdf.sort_values(by='ISO', inplace=True) | |
st.session_state.examplesdf = tempdf | |
# TODO allow new tokenizers from HF | |
tokenizer_names_to_test = [ | |
"openai/gpt4", | |
"xlm-roberta-base", # old style | |
"bert-base-uncased", # old style | |
"sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2", | |
"bigscience/bloom", # HuggingFace | |
"StabilityAI/stablelm-base-alpha-7b", # StableLM with Open Assistant | |
"google/flan-t5-base", # Flan T5 (better than T5), Google | |
"facebook/mbart-large-50", # Facebook | |
"facebook/nllb-200-distilled-600M", # Facebook | |
"EleutherAI/gpt-neox-20b", # same as Pythia | |
] | |
with st.sidebar: | |
st.subheader('Tokenizer') | |
# TODO multi-select tokenizers | |
tokenizer_name = st.sidebar.selectbox('Select tokenizer', options=tokenizer_names_to_test, label_visibility='collapsed') | |
if tokenizer_name not in ['openai/gpt4']: | |
url = f'https://huggingface.co/{tokenizer_name}' | |
link = f'Tokenizer is available [on the HuggingFace hub]({url})' | |
st.markdown(link, unsafe_allow_html=True) | |
else: | |
link="Tokenized using [tiktoken](https://github.com/openai/tiktoken)" | |
st.markdown(link) | |
st.subheader('Data') | |
with st.spinner('Loading dataset...'): | |
val_data = load_data() | |
st.success(f'Data loaded: {len(val_data)}') | |
# st.write(val_data.columns, val_data.head()) | |
with st.expander('Data Source'): | |
st.write("The data in this figure is the validation set of the [Amazon Massive](https://huggingface.co/datasets/AmazonScience/massive/viewer/af-ZA/validation) dataset, which consists of 2033 short sentences and phrases translated into 51 different languages. Learn more about the dataset from [Amazon's blog post](https://www.amazon.science/blog/amazon-releases-51-language-dataset-for-language-understanding)") | |
st.subheader('Languages') | |
languages = st.multiselect( | |
'Select languages', | |
options=sorted(val_data.lang.unique()), | |
default=['English', 'Spanish' ,'Chinese', 'Burmese'], | |
max_selections=6, | |
label_visibility='collapsed' | |
) | |
st.subheader('Figure') | |
show_hist = st.checkbox('Show histogram', value=False) | |
# dist_marginal = st.radio('Select distribution', options=['box', 'violin', 'rug'], horizontal=True) | |
# with st.spinner('Loading tokenizer...'): | |
# tokenizer = AutoTokenizer.from_pretrained(tokenizer_name) | |
# st.success(f'Tokenizer loaded: {tokenizer_name}') | |
# # TODO - add the metadata data as well??? later on maybe | |
# with st.spinner('Calculating tokenization for data...'): | |
# if tokenizer_name not in val_data.columns: | |
# val_data[f'{tokenizer_name}'] = val_data.text.apply(lambda x: len(tokenizer.encode(x))) | |
# st.success('Completed.') | |
with st.container(): | |
if tokenizer_name in val_data.columns: | |
subset_df = val_data[val_data.lang.isin(languages)] | |
subset_data = [val_data[val_data.lang==_lang][tokenizer_name] for _lang in languages] | |
# st.header(f'Comparing languages for {tokenizer_name}') | |
st.subheader(f'Median Token Length for `{tokenizer_name}`') | |
metric_cols = st.columns(len(languages)) | |
for i, _lang in enumerate(languages): | |
metric_cols[i].metric(_lang, int(np.median(subset_df[subset_df.lang==_lang][tokenizer_name]))) | |
fig = ff.create_distplot(subset_data, group_labels=languages, show_hist=show_hist) | |
fig.update_layout( | |
title=dict(text='Token Distribution', font=dict(size=25), automargin=True, yref='paper', ), | |
# title='Distribution of tokens', | |
xaxis_title="Number of Tokens", | |
yaxis_title="Density", | |
height=500 | |
# title_font_family='"Source Sans Pro", sans-serif' | |
) | |
st.plotly_chart(fig, use_container_width=True) | |
st.subheader('Example Texts') | |
reload_example_text_data() | |
if st.button("🔄 Randomly sample"): | |
reload_example_text_data() | |
st.dataframe(st.session_state.examplesdf) # Same as st.write(df) | |
# val_median_data = val_data.groupby('lang')[tokenizer_name].apply(np.median) | |
# val_median_data = val_median_data.sort_values(ascending=False) | |
# val_median_data = val_median_data.reset_index() | |
# # val_median_data = val_median_data[val_median_data.lang.isin(languages)] | |
# val_median_data[tokenizer_name] = val_median_data[tokenizer_name].astype(int) | |
# val_median_data.columns = ['Language', 'Median Number of Tokens'] | |
# # st.write(val_median_data.head()) | |
# bar_fig = px.bar( | |
# val_median_data, | |
# y='Language', | |
# x='Median Number of Tokens', | |
# text_auto='d', | |
# orientation='h', | |
# hover_data=val_median_data.columns, | |
# height=1000, | |
# ) | |
# bar_fig.update_traces(textfont_size=12, textangle=0, cliponaxis=False) | |
# bar_fig.update_layout( | |
# title=dict(text='Comparison of median token lengths', | |
# font=dict(size=20), | |
# automargin=True, yref='paper', ), | |
# ) | |
# st.plotly_chart(bar_fig, use_container_width=True) | |
with st.expander("About the project"): | |
st.write("The purpose of this project is to compare the tokenization length for different languages. For some tokenizers, tokenizing a message in one language may result in 10-20x more tokens than a comparable message in another language (e.g. try English vs. Burmese). This is part of a larger project of measuring inequality in NLP.") | |