HanmunRoBERTa / app.py
yenniejun's picture
Adding plotly plot
d3dbd6c
raw
history blame
3.02 kB
"""
HuggingFace Spaces that:
- loads in HanmunRoBERTa model https://huggingface.co/bdsl/HanmunRoBERTa
- optionally strips text of punctuation and unwanted charactesr
- predicts century for the input text
- Visualizes prediction scores for each century
# https://huggingface.co/blog/streamlit-spaces
# https://huggingface.co/docs/hub/en/spaces-sdks-streamlit
"""
import streamlit as st
from transformers import pipeline
from string import punctuation
import pandas as pd
import plotly.express as px
import plotly.graph_objects as go
colors = px.colors.qualitative.Plotly
# from huggingface_hub import InferenceClient
# client = InferenceClient(model="bdsl/HanmunRoBERTa")
# Load the pipeline with the HanmunRoBERTa model
model_pipeline = pipeline(task="text-classification", model="bdsl/HanmunRoBERTa")
# Streamlit app layout
title = "HanmunRoBERTa Century Classifier"
st.set_page_config(page_title=title, page_icon="πŸ“š")
st.title(title)
# Checkbox to remove punctuation
remove_punct = st.checkbox(label="Remove punctuation", value=True)
# Text area for user input
input_str = st.text_area("Input text", height=275)
# Remove punctuation if checkbox is selected
if remove_punct and input_str:
# Specify the characters to remove
characters_to_remove = "β—‹β–‘()〔〕:\"。·, ?ㆍ" + punctuation
translating = str.maketrans('', '', characters_to_remove)
input_str = input_str.translate(translating)
# Display the input text after processing
st.write("Processed input:", input_str)
# Predict and display the classification scores if input is provided
if st.button("Classify"):
if input_str:
predictions = model_pipeline(input_str)
data = pd.DataFrame(predictions)
data=data.sort_values(by='score', ascending=True)
data.label = data.label.astype(str)
# Displaying predictions as a bar chart
fig = go.Figure(
go.Bar(
x=data.score.values,
y=[f'{i}th Century' for i in data.label.values],
orientation='h',
text=[f'{score:.3f}' for score in data['score'].values], # Format text with 2 decimal points
textposition='outside', # Position the text outside the bars
hoverinfo='text', # Use custom text for hover info
hovertext=[f'{i}th Century<br>Score: {score:.3f}' for i, score in zip(data['label'], data['score'])], # Custom hover text
marker=dict(color=[colors[i % len(colors)] for i in range(len(data))]), # Cycle through colors
))
fig.update_traces(width=0.4)
fig.update_layout(
height=300, # Custom height
xaxis_title='Score',
yaxis_title='',
title='Model predictions and scores',
margin=dict(l=100, r=200, t=50, b=50),
uniformtext_minsize=8,
uniformtext_mode='hide',
)
st.pyplot(fig=fig)
else:
st.write("Please enter some text to classify.")