|
|
|
|
|
import math |
|
|
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
from nncore.nn import MODELS |
|
|
|
|
|
class Permute(nn.Module): |
|
|
|
def __init__(self): |
|
super(Permute, self).__init__() |
|
|
|
def forward(self, x): |
|
return x.transpose(-1, -2) |
|
|
|
|
|
@MODELS.register() |
|
class ConvPyramid(nn.Module): |
|
|
|
def __init__(self, dims, strides): |
|
super(ConvPyramid, self).__init__() |
|
|
|
self.blocks = nn.ModuleList() |
|
for s in strides: |
|
p = int(math.log2(s)) |
|
if p == 0: |
|
layers = nn.ReLU(inplace=True) |
|
else: |
|
layers = nn.Sequential() |
|
conv_cls = nn.Conv1d if p > 0 else nn.ConvTranspose1d |
|
for _ in range(abs(p)): |
|
layers.extend([ |
|
Permute(), |
|
conv_cls(dims, dims, 2, stride=2), |
|
Permute(), |
|
nn.LayerNorm(dims), |
|
nn.ReLU(inplace=True) |
|
]) |
|
self.blocks.append(layers) |
|
|
|
self.strides = strides |
|
|
|
def forward(self, x, mask, return_mask=False): |
|
pymid, pymid_msk = [], [] |
|
|
|
for s, blk in zip(self.strides, self.blocks): |
|
if x.size(1) < s: |
|
continue |
|
|
|
pymid.append(blk(x)) |
|
|
|
if return_mask: |
|
if s > 1: |
|
msk = F.max_pool1d(mask.float(), s, stride=s).long() |
|
elif s < 1: |
|
msk = mask.repeat_interleave(int(1 / s), dim=1) |
|
else: |
|
msk = mask |
|
pymid_msk.append(msk) |
|
|
|
return pymid, pymid_msk |
|
|
|
|
|
@MODELS.register() |
|
class AdaPooling(nn.Module): |
|
|
|
def __init__(self, dims): |
|
super(AdaPooling, self).__init__() |
|
self.att = nn.Linear(dims, 1, bias=False) |
|
|
|
def forward(self, x, mask): |
|
a = self.att(x) + torch.where(mask.unsqueeze(2) == 1, .0, float('-inf')) |
|
a = a.softmax(dim=1) |
|
x = torch.matmul(x.transpose(1, 2), a) |
|
x = x.squeeze(2).unsqueeze(1) |
|
return x |
|
|
|
|
|
@MODELS.register() |
|
class ConvHead(nn.Module): |
|
|
|
def __init__(self, dims, out_dims, kernal_size=3): |
|
super(ConvHead, self).__init__() |
|
|
|
|
|
self.module = nn.Sequential( |
|
Permute(), |
|
nn.Conv1d(dims, dims, kernal_size, padding=kernal_size // 2), |
|
nn.ReLU(inplace=True), |
|
nn.Conv1d(dims, out_dims, kernal_size, padding=kernal_size // 2), |
|
Permute()) |
|
|
|
|
|
def forward(self, x): |
|
return self.module(x) |
|
|