yeecin
commited on
Commit
•
0862b0a
1
Parent(s):
2280605
Upload app.py
Browse files
app.py
CHANGED
@@ -1,35 +1,95 @@
|
|
1 |
-
import os
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
import gradio as gr
|
3 |
-
|
4 |
-
|
5 |
-
from transformers import
|
|
|
|
|
6 |
|
7 |
-
|
8 |
-
|
9 |
-
|
|
|
|
|
10 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
model = BlipForConditionalGeneration.from_pretrained("IDEA-CCNL/Taiyi-BLIP-750M-Chinese")
|
19 |
-
def generate_caption(image):
|
20 |
-
inputs = processor(image, return_tensors="pt")
|
21 |
-
outputs = model(**inputs)
|
22 |
-
description = processor.decode(outputs[0], skip_special_tokens=True)
|
23 |
-
return description
|
24 |
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
inputs=gr.Image(type="pil"),
|
29 |
-
outputs="text",
|
30 |
-
title="图片描述生成器",
|
31 |
-
description="上传一张图片,生成相应的描述。"
|
32 |
-
)
|
33 |
|
34 |
-
|
35 |
-
|
|
|
|
1 |
+
# import os
|
2 |
+
# import gradio as gr
|
3 |
+
# from transformers import BlipProcessor ,BlipForConditionalGeneration
|
4 |
+
# from PIL import Image
|
5 |
+
# from transformers import CLIPProcessor, ChineseCLIPVisionModel ,AutoProcessor
|
6 |
+
#
|
7 |
+
# # 设置环境变量 HF_HOME 和 HF_ENDPOINT
|
8 |
+
# # os.environ['HF_HOME'] = 'D:/AI/OCR/img2text/models'
|
9 |
+
# # os.environ['HF_ENDPOINT'] = 'https://hf-mirror.com'
|
10 |
+
#
|
11 |
+
#
|
12 |
+
# # model = ChineseCLIPVisionModel.from_pretrained("OFA-Sys/chinese-clip-vit-base-patch16")
|
13 |
+
# # processor = AutoProcessor.from_pretrained("OFA-Sys/chinese-clip-vit-base-patch16")
|
14 |
+
# # 加载模型和处理器
|
15 |
+
# # processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-base")
|
16 |
+
# # model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-base")
|
17 |
+
# processor = BlipProcessor.from_pretrained("IDEA-CCNL/Taiyi-BLIP-750M-Chinese")
|
18 |
+
# model = BlipForConditionalGeneration.from_pretrained("IDEA-CCNL/Taiyi-BLIP-750M-Chinese")
|
19 |
+
# def generate_caption(image):
|
20 |
+
# # 确保 image 是 PIL.Image 类型
|
21 |
+
# if not isinstance(image, Image.Image):
|
22 |
+
# raise ValueError("Input must be a PIL.Image")
|
23 |
+
#
|
24 |
+
# inputs = processor(image, return_tensors="pt")
|
25 |
+
# input_ids = inputs.get("input_ids")
|
26 |
+
# if input_ids is None:
|
27 |
+
# raise ValueError("Processor did not return input_ids")
|
28 |
+
#
|
29 |
+
# outputs = model.generate(input_ids=input_ids, max_length=50)
|
30 |
+
# description = processor.decode(outputs[0], skip_special_tokens=True)
|
31 |
+
# return description
|
32 |
+
#
|
33 |
+
# # 创建Gradio接口
|
34 |
+
# gradio_app = gr.Interface(
|
35 |
+
# fn=generate_caption,
|
36 |
+
# inputs=gr.Image(type="pil"),
|
37 |
+
# outputs="text",
|
38 |
+
# title="图片描述生成器",
|
39 |
+
# description="上传一张图片,生成相应的描述。"
|
40 |
+
# )
|
41 |
+
#
|
42 |
+
# if __name__ == "__main__":
|
43 |
+
# gradio_app.launch()
|
44 |
import gradio as gr
|
45 |
+
import torch
|
46 |
+
import os
|
47 |
+
from transformers import BlipForConditionalGeneration, BlipProcessor, GenerationConfig
|
48 |
+
|
49 |
+
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
50 |
|
51 |
+
_MODEL_PATH = 'IDEA-CCNL/Taiyi-BLIP-750M-Chinese'
|
52 |
+
HF_TOKEN = os.getenv('HF_TOKEN')
|
53 |
+
processor = BlipProcessor.from_pretrained(_MODEL_PATH, use_auth_token=HF_TOKEN)
|
54 |
+
model = BlipForConditionalGeneration.from_pretrained(
|
55 |
+
_MODEL_PATH, use_auth_token=HF_TOKEN).eval().to(device)
|
56 |
|
57 |
+
def inference(raw_image, model_n, strategy):
|
58 |
+
if model_n == 'Image Captioning':
|
59 |
+
input = processor(raw_image, return_tensors="pt").to(device)
|
60 |
+
with torch.no_grad():
|
61 |
+
if strategy == "Beam search":
|
62 |
+
config = GenerationConfig(
|
63 |
+
do_sample=False,
|
64 |
+
num_beams=3,
|
65 |
+
max_length=50,
|
66 |
+
min_length=5,
|
67 |
+
)
|
68 |
+
captions = model.generate(**input, generation_config=config)
|
69 |
+
else:
|
70 |
+
config = GenerationConfig(
|
71 |
+
do_sample=True,
|
72 |
+
top_p=0.9,
|
73 |
+
max_length=50,
|
74 |
+
min_length=5,
|
75 |
+
)
|
76 |
+
captions = model.generate(**input, generation_config=config)
|
77 |
+
caption = processor.decode(captions[0], skip_special_tokens=True)
|
78 |
+
caption = caption.replace(' ', '')
|
79 |
+
print(caption)
|
80 |
+
return 'caption: ' + caption
|
81 |
|
82 |
+
inputs = [
|
83 |
+
gr.Image(type='pil', label="Upload Image"),
|
84 |
+
gr.Radio(choices=['Image Captioning'], value="Image Captioning", label="Task"),
|
85 |
+
gr.Radio(choices=['Beam search', 'Nucleus sampling'], value="Nucleus sampling", label="Caption Decoding Strategy")
|
86 |
+
]
|
87 |
+
outputs = gr.Textbox(label="Output")
|
|
|
|
|
|
|
|
|
|
|
|
|
88 |
|
89 |
+
title = "BLIP"
|
90 |
+
description = "Gradio demo for BLIP: Bootstrapping Language-Image Pre-training for Unified Vision-Language Understanding and Generation (Salesforce Research). To use it, simply upload your image, or click one of the examples to load them. Read more at the links below."
|
91 |
+
article = "<p style='text-align: center'><a href='https://github.com/IDEA-CCNL/Fengshenbang-LM' target='_blank'>Github Repo</a></p>"
|
|
|
|
|
|
|
|
|
|
|
92 |
|
93 |
+
gr.Interface(inference, inputs, outputs, title=title, description=description, article=article, examples=[
|
94 |
+
['demo.jpg', "Image Captioning", "Nucleus sampling"]
|
95 |
+
]).launch()
|