|
import gradio as gr
|
|
from transformers import pipeline
|
|
|
|
pipeline = pipeline(task="image-classification", model="julien-c/hotdog-not-hotdog")
|
|
|
|
def predict(input_img):
|
|
predictions = pipeline(input_img)
|
|
return input_img, {p["label"]: p["score"] for p in predictions}
|
|
|
|
gradio_app = gr.Interface(
|
|
predict,
|
|
inputs=gr.Image(label="Select hot dog candidate", sources=['upload', 'webcam'], type="pil"),
|
|
outputs=[gr.Image(label="Processed Image"), gr.Label(label="Result", num_top_classes=2)],
|
|
title="Hot Dog? Or Not?",
|
|
)
|
|
|
|
if __name__ == "__main__":
|
|
gradio_app.launch() |