Spaces:
Sleeping
Sleeping
陳俞蒨
commited on
Commit
·
4df43e2
1
Parent(s):
545d681
seperate into app.py and segmentation.py
Browse files- __pycache__/segmentation.cpython-312.pyc +0 -0
- app.py +5 -67
- segmentation.ipynb +0 -0
- segmentation.py +42 -34
__pycache__/segmentation.cpython-312.pyc
ADDED
|
Binary file (3.59 kB). View file
|
|
|
app.py
CHANGED
|
@@ -8,68 +8,17 @@ import cv2
|
|
| 8 |
from PIL import Image as PIL_Image
|
| 9 |
from io import BytesIO
|
| 10 |
import matplotlib.pyplot as plt
|
|
|
|
| 11 |
|
| 12 |
-
# def flip_text(x):
|
| 13 |
-
# return x[::-1]
|
| 14 |
-
# def flip_image(x):
|
| 15 |
-
# return np.fliplr(x)
|
| 16 |
|
| 17 |
def image_segmentation(x, threshold_factor):
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
im = PIL_Image.fromarray(ima)
|
| 23 |
-
bio = BytesIO()
|
| 24 |
-
im.save(bio, format='png')
|
| 25 |
-
return bio.getvalue()
|
| 26 |
-
|
| 27 |
-
# img = cv2.imread(x) # 改為使用Gradio傳入的圖片
|
| 28 |
-
img = x
|
| 29 |
-
# plt.imshow(img[..., ::-1])
|
| 30 |
-
|
| 31 |
-
gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
|
| 32 |
-
ret, thresh = cv2.threshold(gray,0,255,cv2.THRESH_BINARY_INV+cv2.THRESH_OTSU)
|
| 33 |
-
kernel = np.ones((3,3),np.uint8)
|
| 34 |
-
opening = cv2.morphologyEx(thresh,cv2.MORPH_OPEN,kernel, iterations = 2)
|
| 35 |
-
|
| 36 |
-
# sure background area
|
| 37 |
-
sure_bg = cv2.dilate(opening,kernel,iterations=3)
|
| 38 |
-
# Finding sure foreground area
|
| 39 |
-
dist_transform = cv2.distanceTransform(opening,cv2.DIST_L2,5)
|
| 40 |
-
ret, sure_fg = cv2.threshold(dist_transform,threshold_factor*dist_transform.max(),255,0)
|
| 41 |
-
# Finding unknown region
|
| 42 |
-
sure_fg = np.uint8(sure_fg)
|
| 43 |
-
unknown = cv2.subtract(sure_bg,sure_fg)
|
| 44 |
-
# Marker labelling
|
| 45 |
-
ret, markers0 = cv2.connectedComponents(sure_fg)
|
| 46 |
-
# Add one to all labels so that sure background is not 0, but 1
|
| 47 |
-
markers = markers0+1
|
| 48 |
-
# Now, mark the region of unknown with zero
|
| 49 |
-
markers[unknown==255] = 0
|
| 50 |
-
markers = cv2.watershed(img,markers)
|
| 51 |
-
img[markers == -1] = [255,0,0]
|
| 52 |
-
|
| 53 |
-
# plt.imshow(dist_transform)
|
| 54 |
-
# plt.imshow(sure_fg)
|
| 55 |
-
# plt.imshow(sure_bg, alpha=0.3)
|
| 56 |
-
# plt.imshow(markers)
|
| 57 |
-
|
| 58 |
-
# 將 markers 範圍縮放到 0-255 並轉換為 uint8 類型
|
| 59 |
-
markers_scaled = (markers - markers.min()) / (markers.max() - markers.min()) * 255
|
| 60 |
-
markers_scaled = markers_scaled.astype(np.uint8)
|
| 61 |
-
|
| 62 |
-
# 使用 applyColorMap 生成彩色圖像
|
| 63 |
-
markers_colored = cv2.applyColorMap(markers_scaled, cv2.COLORMAP_JET)
|
| 64 |
-
|
| 65 |
-
return markers_colored # 返回彩色分割結果圖
|
| 66 |
|
| 67 |
with gr.Blocks() as demo:
|
| 68 |
gr.Markdown("Image Segmentation using Gradio")
|
| 69 |
-
# with gr.Tab("Flip Text"):
|
| 70 |
-
# text_input = gr.Textbox()
|
| 71 |
-
# text_output = gr.Textbox()
|
| 72 |
-
# text_button = gr.Button("Flip")
|
| 73 |
with gr.Tab("Image Segmentation"):
|
| 74 |
with gr.Row():
|
| 75 |
image_input = gr.Image()
|
|
@@ -83,17 +32,6 @@ with gr.Blocks() as demo:
|
|
| 83 |
)
|
| 84 |
image_button = gr.Button("Flip")
|
| 85 |
|
| 86 |
-
# with gr.Accordion("Open for More!", open=False):
|
| 87 |
-
# gr.Markdown("Look at me...")
|
| 88 |
-
# temp_slider = gr.Slider(
|
| 89 |
-
# 0, 1,
|
| 90 |
-
# value=0.1,
|
| 91 |
-
# step=0.1,
|
| 92 |
-
# interactive=True,
|
| 93 |
-
# label="Slide me",
|
| 94 |
-
# )
|
| 95 |
-
|
| 96 |
-
# text_button.click(flip_text, inputs=text_input, outputs=text_output)
|
| 97 |
image_button.click(image_segmentation, inputs=[image_input, temp_slider], outputs=image_output)
|
| 98 |
|
| 99 |
if __name__ == "__main__":
|
|
|
|
| 8 |
from PIL import Image as PIL_Image
|
| 9 |
from io import BytesIO
|
| 10 |
import matplotlib.pyplot as plt
|
| 11 |
+
from segmentation import ImageSegmentation
|
| 12 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 13 |
|
| 14 |
def image_segmentation(x, threshold_factor):
|
| 15 |
+
segmetation = ImageSegmentation(x, threshold_factor)
|
| 16 |
+
output_img = segmetation.segmented_img
|
| 17 |
+
return output_img
|
| 18 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 19 |
|
| 20 |
with gr.Blocks() as demo:
|
| 21 |
gr.Markdown("Image Segmentation using Gradio")
|
|
|
|
|
|
|
|
|
|
|
|
|
| 22 |
with gr.Tab("Image Segmentation"):
|
| 23 |
with gr.Row():
|
| 24 |
image_input = gr.Image()
|
|
|
|
| 32 |
)
|
| 33 |
image_button = gr.Button("Flip")
|
| 34 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 35 |
image_button.click(image_segmentation, inputs=[image_input, temp_slider], outputs=image_output)
|
| 36 |
|
| 37 |
if __name__ == "__main__":
|
segmentation.ipynb
DELETED
|
The diff for this file is too large to render.
See raw diff
|
|
|
segmentation.py
CHANGED
|
@@ -7,41 +7,49 @@ from PIL import Image as PIL_Image
|
|
| 7 |
from io import BytesIO
|
| 8 |
import matplotlib.pyplot as plt
|
| 9 |
|
| 10 |
-
|
| 11 |
-
def
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 18 |
|
| 19 |
-
|
| 20 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 21 |
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
opening = cv2.morphologyEx(thresh,cv2.MORPH_OPEN,kernel, iterations = 2)
|
| 26 |
|
| 27 |
-
#
|
| 28 |
-
|
| 29 |
-
# Finding sure foreground area
|
| 30 |
-
dist_transform = cv2.distanceTransform(opening,cv2.DIST_L2,5)
|
| 31 |
-
ret, sure_fg = cv2.threshold(dist_transform,0.7*dist_transform.max(),255,0)
|
| 32 |
-
# Finding unknown region
|
| 33 |
-
sure_fg = np.uint8(sure_fg)
|
| 34 |
-
unknown = cv2.subtract(sure_bg,sure_fg)
|
| 35 |
-
# Marker labelling
|
| 36 |
-
ret, markers0 = cv2.connectedComponents(sure_fg)
|
| 37 |
-
# Add one to all labels so that sure background is not 0, but 1
|
| 38 |
-
markers = markers0+1
|
| 39 |
-
# Now, mark the region of unknown with zero
|
| 40 |
-
markers[unknown==255] = 0
|
| 41 |
-
markers = cv2.watershed(img,markers)
|
| 42 |
-
img[markers == -1] = [255,0,0]
|
| 43 |
|
| 44 |
-
#
|
| 45 |
-
# plt.imshow(sure_fg)
|
| 46 |
-
# plt.imshow(sure_bg, alpha=0.3)
|
| 47 |
-
# plt.imshow(markers)
|
|
|
|
| 7 |
from io import BytesIO
|
| 8 |
import matplotlib.pyplot as plt
|
| 9 |
|
| 10 |
+
class ImageSegmentation():
|
| 11 |
+
def __init__(self, x, threshold_factor):
|
| 12 |
+
self.img = x
|
| 13 |
+
self.threshold_factor = threshold_factor
|
| 14 |
+
self.segmented_img = self.segmentation()
|
| 15 |
+
|
| 16 |
+
def img_to_png(ima, cvt=None):
|
| 17 |
+
if cvt:
|
| 18 |
+
ima = cv2.cvtColor(ima, cvt)
|
| 19 |
+
im = PIL_Image.fromarray(ima)
|
| 20 |
+
bio = BytesIO()
|
| 21 |
+
im.save(bio, format='png')
|
| 22 |
+
return bio.getvalue()
|
| 23 |
+
|
| 24 |
+
def segmentation(self):
|
| 25 |
+
cv2.startWindowThread()
|
| 26 |
+
gray = cv2.cvtColor(self.img,cv2.COLOR_BGR2GRAY)
|
| 27 |
+
_, thresh = cv2.threshold(gray,0,255,cv2.THRESH_BINARY_INV+cv2.THRESH_OTSU)
|
| 28 |
+
kernel = np.ones((3,3),np.uint8)
|
| 29 |
+
opening = cv2.morphologyEx(thresh,cv2.MORPH_OPEN,kernel, iterations = 2)
|
| 30 |
|
| 31 |
+
# sure background area
|
| 32 |
+
sure_bg = cv2.dilate(opening,kernel,iterations=3)
|
| 33 |
+
# Finding sure foreground area
|
| 34 |
+
dist_transform = cv2.distanceTransform(opening,cv2.DIST_L2,5)
|
| 35 |
+
_, sure_fg = cv2.threshold(dist_transform,self.threshold_factor*dist_transform.max(),255,0)
|
| 36 |
+
# Finding unknown region
|
| 37 |
+
sure_fg = np.uint8(sure_fg)
|
| 38 |
+
unknown = cv2.subtract(sure_bg,sure_fg)
|
| 39 |
+
# Marker labelling
|
| 40 |
+
_, markers0 = cv2.connectedComponents(sure_fg)
|
| 41 |
+
# Add one to all labels so that sure background is not 0, but 1
|
| 42 |
+
markers = markers0+1
|
| 43 |
+
# Now, mark the region of unknown with zero
|
| 44 |
+
markers[unknown==255] = 0
|
| 45 |
+
markers = cv2.watershed(self.img,markers)
|
| 46 |
+
self.img[markers == -1] = [255,0,0]
|
| 47 |
|
| 48 |
+
# 將 markers 範圍縮放到 0-255 並轉換為 uint8 類型
|
| 49 |
+
markers_scaled = (markers - markers.min()) / (markers.max() - markers.min()) * 255
|
| 50 |
+
markers_scaled = markers_scaled.astype(np.uint8)
|
|
|
|
| 51 |
|
| 52 |
+
# 使用 applyColorMap 生成彩色圖像
|
| 53 |
+
markers_colored = cv2.applyColorMap(markers_scaled, cv2.COLORMAP_JET)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 54 |
|
| 55 |
+
return markers_colored # 返回彩色分割結果圖
|
|
|
|
|
|
|
|
|