Spaces:
Runtime error
Runtime error
import os | |
import json | |
import torch | |
import numpy as np | |
from tqdm import tqdm | |
from vbench.utils import load_video, load_dimension_info | |
from vbench.third_party.grit_model import DenseCaptioning | |
import logging | |
logging.basicConfig(level = logging.INFO,format = '%(asctime)s - %(name)s - %(levelname)s - %(message)s') | |
logger = logging.getLogger(__name__) | |
def get_dect_from_grit(model, image_arrays): | |
pred = [] | |
if type(image_arrays) is not list: | |
image_arrays = image_arrays.numpy() | |
with torch.no_grad(): | |
for frame in image_arrays: | |
try: | |
pred.append(set(model.run_caption_tensor(frame)[0][0][2])) | |
except: | |
pred.append(set()) | |
return pred | |
def check_generate(key_info, predictions): | |
cur_cnt = 0 | |
for pred in predictions: | |
if key_info in pred: | |
cur_cnt+=1 | |
return cur_cnt | |
def object_class(model, video_dict, device): | |
success_frame_count, frame_count = 0,0 | |
video_results = [] | |
for info in tqdm(video_dict): | |
if 'auxiliary_info' not in info: | |
raise "Auxiliary info is not in json, please check your json." | |
object_info = info['auxiliary_info']['object'] | |
for video_path in info['video_list']: | |
video_tensor = load_video(video_path, num_frames=16) | |
cur_video_pred = get_dect_from_grit(model, video_tensor.permute(0,2,3,1)) | |
cur_success_frame_count = check_generate(object_info, cur_video_pred) | |
cur_success_frame_rate = cur_success_frame_count/len(cur_video_pred) | |
success_frame_count += cur_success_frame_count | |
frame_count += len(cur_video_pred) | |
video_results.append({'video_path': video_path, 'video_results': cur_success_frame_rate}) | |
success_rate = success_frame_count / frame_count | |
return success_rate, video_results | |
def compute_object_class(json_dir, device, submodules_dict): | |
dense_caption_model = DenseCaptioning(device) | |
dense_caption_model.initialize_model_det(**submodules_dict) | |
logger.info("Initialize detection model success") | |
_, prompt_dict_ls = load_dimension_info(json_dir, dimension='object_class', lang='en') | |
all_results, video_results = object_class(dense_caption_model, prompt_dict_ls, device) | |
return all_results, video_results | |