VideoCrafterXtend / VBench /vbench /object_class.py
ychenhq's picture
Upload folder using huggingface_hub
04fbff5 verified
import os
import json
import torch
import numpy as np
from tqdm import tqdm
from vbench.utils import load_video, load_dimension_info
from vbench.third_party.grit_model import DenseCaptioning
import logging
logging.basicConfig(level = logging.INFO,format = '%(asctime)s - %(name)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)
def get_dect_from_grit(model, image_arrays):
pred = []
if type(image_arrays) is not list:
image_arrays = image_arrays.numpy()
with torch.no_grad():
for frame in image_arrays:
try:
pred.append(set(model.run_caption_tensor(frame)[0][0][2]))
except:
pred.append(set())
return pred
def check_generate(key_info, predictions):
cur_cnt = 0
for pred in predictions:
if key_info in pred:
cur_cnt+=1
return cur_cnt
def object_class(model, video_dict, device):
success_frame_count, frame_count = 0,0
video_results = []
for info in tqdm(video_dict):
if 'auxiliary_info' not in info:
raise "Auxiliary info is not in json, please check your json."
object_info = info['auxiliary_info']['object']
for video_path in info['video_list']:
video_tensor = load_video(video_path, num_frames=16)
cur_video_pred = get_dect_from_grit(model, video_tensor.permute(0,2,3,1))
cur_success_frame_count = check_generate(object_info, cur_video_pred)
cur_success_frame_rate = cur_success_frame_count/len(cur_video_pred)
success_frame_count += cur_success_frame_count
frame_count += len(cur_video_pred)
video_results.append({'video_path': video_path, 'video_results': cur_success_frame_rate})
success_rate = success_frame_count / frame_count
return success_rate, video_results
def compute_object_class(json_dir, device, submodules_dict):
dense_caption_model = DenseCaptioning(device)
dense_caption_model.initialize_model_det(**submodules_dict)
logger.info("Initialize detection model success")
_, prompt_dict_ls = load_dimension_info(json_dir, dimension='object_class', lang='en')
all_results, video_results = object_class(dense_caption_model, prompt_dict_ls, device)
return all_results, video_results