Spaces:
Runtime error
Runtime error
import os | |
import sys | |
sys.path.append('.') | |
import cv2 | |
import math | |
import torch | |
import argparse | |
import numpy as np | |
from torch.nn import functional as F | |
from model.pytorch_msssim import ssim_matlab | |
from model.RIFE import Model | |
from skimage.color import rgb2yuv, yuv2rgb | |
from yuv_frame_io import YUV_Read,YUV_Write | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
model = Model() | |
model.load_model('train_log') | |
model.eval() | |
model.device() | |
name_list = [ | |
('HD_dataset/HD720p_GT/parkrun_1280x720_50.yuv', 720, 1280), | |
('HD_dataset/HD720p_GT/shields_1280x720_60.yuv', 720, 1280), | |
('HD_dataset/HD720p_GT/stockholm_1280x720_60.yuv', 720, 1280), | |
('HD_dataset/HD1080p_GT/BlueSky.yuv', 1080, 1920), | |
('HD_dataset/HD1080p_GT/Kimono1_1920x1080_24.yuv', 1080, 1920), | |
('HD_dataset/HD1080p_GT/ParkScene_1920x1080_24.yuv', 1080, 1920), | |
('HD_dataset/HD1080p_GT/sunflower_1080p25.yuv', 1080, 1920), | |
('HD_dataset/HD544p_GT/Sintel_Alley2_1280x544.yuv', 544, 1280), | |
('HD_dataset/HD544p_GT/Sintel_Market5_1280x544.yuv', 544, 1280), | |
('HD_dataset/HD544p_GT/Sintel_Temple1_1280x544.yuv', 544, 1280), | |
('HD_dataset/HD544p_GT/Sintel_Temple2_1280x544.yuv', 544, 1280), | |
] | |
tot = 0. | |
for data in name_list: | |
psnr_list = [] | |
name = data[0] | |
h = data[1] | |
w = data[2] | |
if 'yuv' in name: | |
Reader = YUV_Read(name, h, w, toRGB=True) | |
else: | |
Reader = cv2.VideoCapture(name) | |
_, lastframe = Reader.read() | |
# fourcc = cv2.VideoWriter_fourcc('m', 'p', '4', 'v') | |
# video = cv2.VideoWriter(name + '.mp4', fourcc, 30, (w, h)) | |
for index in range(0, 100, 2): | |
if 'yuv' in name: | |
IMAGE1, success1 = Reader.read(index) | |
gt, _ = Reader.read(index + 1) | |
IMAGE2, success2 = Reader.read(index + 2) | |
if not success2: | |
break | |
else: | |
success1, gt = Reader.read() | |
success2, frame = Reader.read() | |
IMAGE1 = lastframe | |
IMAGE2 = frame | |
lastframe = frame | |
if not success2: | |
break | |
I0 = torch.from_numpy(np.transpose(IMAGE1, (2,0,1)).astype("float32") / 255.).cuda().unsqueeze(0) | |
I1 = torch.from_numpy(np.transpose(IMAGE2, (2,0,1)).astype("float32") / 255.).cuda().unsqueeze(0) | |
if h == 720: | |
pad = 24 | |
elif h == 1080: | |
pad = 4 | |
else: | |
pad = 16 | |
pader = torch.nn.ReplicationPad2d([0, 0, pad, pad]) | |
I0 = pader(I0) | |
I1 = pader(I1) | |
with torch.no_grad(): | |
pred = model.inference(I0, I1) | |
pred = pred[:, :, pad: -pad] | |
out = (np.round(pred[0].detach().cpu().numpy().transpose(1, 2, 0) * 255)).astype('uint8') | |
# video.write(out) | |
if 'yuv' in name: | |
diff_rgb = 128.0 + rgb2yuv(gt / 255.)[:, :, 0] * 255 - rgb2yuv(out / 255.)[:, :, 0] * 255 | |
mse = np.mean((diff_rgb - 128.0) ** 2) | |
PIXEL_MAX = 255.0 | |
psnr = 20 * math.log10(PIXEL_MAX / math.sqrt(mse)) | |
else: | |
psnr = skim.compare_psnr(gt, out) | |
psnr_list.append(psnr) | |
print(np.mean(psnr_list)) | |
tot += np.mean(psnr_list) | |
print('avg psnr', tot / len(name_list)) | |