Spaces:
Running
on
Zero
Running
on
Zero
import gradio as gr | |
import spaces | |
import torch | |
from transformers import AutoProcessor, LlavaForConditionalGeneration | |
model_id = "llava-hf/llava-1.5-7b-hf" | |
prompt_format = "USER: <image>\n{}\nASSISTANT:" | |
image_file = "http://images.cocodataset.org/val2017/000000039769.jpg" | |
model = LlavaForConditionalGeneration.from_pretrained( | |
model_id, | |
torch_dtype=torch.float16, | |
low_cpu_mem_usage=True, | |
).cuda() | |
processor = AutoProcessor.from_pretrained(model_id) | |
def inference(text, image): | |
prompt = prompt_format.format(text) | |
inputs = processor(prompt, image, return_tensors='pt').to(0, torch.float16) | |
output = model.generate(**inputs, max_new_tokens=1024) | |
return processor.decode(output[0], skip_special_tokens=True).split("ASSISTANT:")[-1] | |
gr.Interface(fn=inference, inputs=[gr.Text(), gr.Image()], outputs=gr.Text()).launch() |