Spaces:
Runtime error
Runtime error
# python3.7 | |
"""Contains the generator class of StyleGAN. | |
Basically, this class is derived from the `BaseGenerator` class defined in | |
`base_generator.py`. | |
""" | |
import os | |
import numpy as np | |
import torch | |
from . import model_settings | |
from .stylegan_generator_model import StyleGANGeneratorModel | |
from .base_generator import BaseGenerator | |
__all__ = ['StyleGANGenerator'] | |
class StyleGANGenerator(BaseGenerator): | |
"""Defines the generator class of StyleGAN. | |
Different from conventional GAN, StyleGAN introduces a disentangled latent | |
space (i.e., W space) besides the normal latent space (i.e., Z space). Then, | |
the disentangled latent code, w, is fed into each convolutional layer to | |
modulate the `style` of the synthesis through AdaIN (Adaptive Instance | |
Normalization) layer. Normally, the w's fed into all layers are the same. But, | |
they can actually be different to make different layers get different styles. | |
Accordingly, an extended space (i.e. W+ space) is used to gather all w's | |
together. Taking the official StyleGAN model trained on FF-HQ dataset as an | |
instance, there are | |
(1) Z space, with dimension (512,) | |
(2) W space, with dimension (512,) | |
(3) W+ space, with dimension (18, 512) | |
""" | |
def __init__(self, model_name, logger=None): | |
self.truncation_psi = model_settings.STYLEGAN_TRUNCATION_PSI | |
self.truncation_layers = model_settings.STYLEGAN_TRUNCATION_LAYERS | |
self.randomize_noise = model_settings.STYLEGAN_RANDOMIZE_NOISE | |
self.model_specific_vars = ['truncation.truncation'] | |
super().__init__(model_name, logger) | |
self.num_layers = (int(np.log2(self.resolution)) - 1) * 2 | |
assert self.gan_type == 'stylegan' | |
def build(self): | |
self.check_attr('w_space_dim') | |
self.check_attr('fused_scale') | |
self.model = StyleGANGeneratorModel( | |
resolution=self.resolution, | |
w_space_dim=self.w_space_dim, | |
fused_scale=self.fused_scale, | |
output_channels=self.output_channels, | |
truncation_psi=self.truncation_psi, | |
truncation_layers=self.truncation_layers, | |
randomize_noise=self.randomize_noise) | |
def load(self): | |
self.logger.info(f'Loading pytorch model from `{self.model_path}`.') | |
state_dict = torch.load(self.model_path) | |
for var_name in self.model_specific_vars: | |
state_dict[var_name] = self.model.state_dict()[var_name] | |
self.model.load_state_dict(state_dict) | |
self.logger.info(f'Successfully loaded!') | |
self.lod = self.model.synthesis.lod.to(self.cpu_device).tolist() | |
self.logger.info(f' `lod` of the loaded model is {self.lod}.') | |
def convert_tf_model(self, test_num=10): | |
import sys | |
import pickle | |
import tensorflow as tf | |
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2' | |
sys.path.append(model_settings.BASE_DIR + '/stylegan_tf_official') | |
self.logger.info(f'Loading tensorflow model from `{self.tf_model_path}`.') | |
tf.InteractiveSession() | |
with open(self.tf_model_path, 'rb') as f: | |
_, _, tf_model = pickle.load(f) | |
self.logger.info(f'Successfully loaded!') | |
self.logger.info(f'Converting tensorflow model to pytorch version.') | |
tf_vars = dict(tf_model.__getstate__()['variables']) | |
tf_vars.update( | |
dict(tf_model.components.mapping.__getstate__()['variables'])) | |
tf_vars.update( | |
dict(tf_model.components.synthesis.__getstate__()['variables'])) | |
state_dict = self.model.state_dict() | |
for pth_var_name, tf_var_name in self.model.pth_to_tf_var_mapping.items(): | |
if 'ToRGB_lod' in tf_var_name: | |
lod = int(tf_var_name[len('ToRGB_lod')]) | |
lod_shift = 10 - int(np.log2(self.resolution)) | |
tf_var_name = tf_var_name.replace(f'{lod}', f'{lod - lod_shift}') | |
if tf_var_name not in tf_vars: | |
self.logger.debug(f'Variable `{tf_var_name}` does not exist in ' | |
f'tensorflow model.') | |
continue | |
self.logger.debug(f' Converting `{tf_var_name}` to `{pth_var_name}`.') | |
var = torch.from_numpy(np.array(tf_vars[tf_var_name])) | |
if 'weight' in pth_var_name: | |
if 'dense' in pth_var_name: | |
var = var.permute(1, 0) | |
elif 'conv' in pth_var_name: | |
var = var.permute(3, 2, 0, 1) | |
state_dict[pth_var_name] = var | |
self.logger.info(f'Successfully converted!') | |
self.logger.info(f'Saving pytorch model to `{self.model_path}`.') | |
for var_name in self.model_specific_vars: | |
del state_dict[var_name] | |
torch.save(state_dict, self.model_path) | |
self.logger.info(f'Successfully saved!') | |
self.load() | |
# Official tensorflow model can only run on GPU. | |
if test_num <= 0 or not tf.test.is_built_with_cuda(): | |
return | |
self.logger.info(f'Testing conversion results.') | |
self.model.eval().to(self.run_device) | |
total_distance = 0.0 | |
for i in range(test_num): | |
latent_code = self.easy_sample(1) | |
tf_output = tf_model.run(latent_code, # latents_in | |
None, # labels_in | |
truncation_psi=self.truncation_psi, | |
truncation_cutoff=self.truncation_layers, | |
randomize_noise=self.randomize_noise) | |
pth_output = self.synthesize(latent_code)['image'] | |
distance = np.average(np.abs(tf_output - pth_output)) | |
self.logger.debug(f' Test {i:03d}: distance {distance:.6e}.') | |
total_distance += distance | |
self.logger.info(f'Average distance is {total_distance / test_num:.6e}.') | |
def sample(self, num, latent_space_type='Z'): | |
"""Samples latent codes randomly. | |
Args: | |
num: Number of latent codes to sample. Should be positive. | |
latent_space_type: Type of latent space from which to sample latent code. | |
Only [`Z`, `W`, `WP`] are supported. Case insensitive. (default: `Z`) | |
Returns: | |
A `numpy.ndarray` as sampled latend codes. | |
Raises: | |
ValueError: If the given `latent_space_type` is not supported. | |
""" | |
latent_space_type = latent_space_type.upper() | |
if latent_space_type == 'Z': | |
latent_codes = np.random.randn(num, self.latent_space_dim) | |
elif latent_space_type == 'W': | |
latent_codes = np.random.randn(num, self.w_space_dim) | |
elif latent_space_type == 'WP': | |
latent_codes = np.random.randn(num, self.num_layers, self.w_space_dim) | |
else: | |
raise ValueError(f'Latent space type `{latent_space_type}` is invalid!') | |
return latent_codes.astype(np.float32) | |
def preprocess(self, latent_codes, latent_space_type='Z'): | |
"""Preprocesses the input latent code if needed. | |
Args: | |
latent_codes: The input latent codes for preprocessing. | |
latent_space_type: Type of latent space to which the latent codes belong. | |
Only [`Z`, `W`, `WP`] are supported. Case insensitive. (default: `Z`) | |
Returns: | |
The preprocessed latent codes which can be used as final input for the | |
generator. | |
Raises: | |
ValueError: If the given `latent_space_type` is not supported. | |
""" | |
if not isinstance(latent_codes, np.ndarray): | |
raise ValueError(f'Latent codes should be with type `numpy.ndarray`!') | |
latent_space_type = latent_space_type.upper() | |
if latent_space_type == 'Z': | |
latent_codes = latent_codes.reshape(-1, self.latent_space_dim) | |
norm = np.linalg.norm(latent_codes, axis=1, keepdims=True) | |
latent_codes = latent_codes / norm * np.sqrt(self.latent_space_dim) | |
elif latent_space_type == 'W': | |
latent_codes = latent_codes.reshape(-1, self.w_space_dim) | |
elif latent_space_type == 'WP': | |
latent_codes = latent_codes.reshape(-1, self.num_layers, self.w_space_dim) | |
else: | |
raise ValueError(f'Latent space type `{latent_space_type}` is invalid!') | |
return latent_codes.astype(np.float32) | |
def easy_sample(self, num, latent_space_type='Z'): | |
return self.preprocess(self.sample(num, latent_space_type), | |
latent_space_type) | |
def synthesize(self, | |
latent_codes, | |
latent_space_type='Z', | |
generate_style=False, | |
generate_image=True): | |
"""Synthesizes images with given latent codes. | |
One can choose whether to generate the layer-wise style codes. | |
Args: | |
latent_codes: Input latent codes for image synthesis. | |
latent_space_type: Type of latent space to which the latent codes belong. | |
Only [`Z`, `W`, `WP`] are supported. Case insensitive. (default: `Z`) | |
generate_style: Whether to generate the layer-wise style codes. (default: | |
False) | |
generate_image: Whether to generate the final image synthesis. (default: | |
True) | |
Returns: | |
A dictionary whose values are raw outputs from the generator. | |
""" | |
if not isinstance(latent_codes, np.ndarray): | |
raise ValueError(f'Latent codes should be with type `numpy.ndarray`!') | |
results = {} | |
latent_space_type = latent_space_type.upper() | |
latent_codes_shape = latent_codes.shape | |
# Generate from Z space. | |
if latent_space_type == 'Z': | |
if not (len(latent_codes_shape) == 2 and | |
latent_codes_shape[0] <= self.batch_size and | |
latent_codes_shape[1] == self.latent_space_dim): | |
raise ValueError(f'Latent_codes should be with shape [batch_size, ' | |
f'latent_space_dim], where `batch_size` no larger ' | |
f'than {self.batch_size}, and `latent_space_dim` ' | |
f'equal to {self.latent_space_dim}!\n' | |
f'But {latent_codes_shape} received!') | |
zs = torch.from_numpy(latent_codes).type(torch.FloatTensor) | |
zs = zs.to(self.run_device) | |
ws = self.model.mapping(zs) | |
wps = self.model.truncation(ws) | |
results['z'] = latent_codes | |
results['w'] = self.get_value(ws) | |
results['wp'] = self.get_value(wps) | |
# Generate from W space. | |
elif latent_space_type == 'W': | |
if not (len(latent_codes_shape) == 2 and | |
latent_codes_shape[0] <= self.batch_size and | |
latent_codes_shape[1] == self.w_space_dim): | |
raise ValueError(f'Latent_codes should be with shape [batch_size, ' | |
f'w_space_dim], where `batch_size` no larger than ' | |
f'{self.batch_size}, and `w_space_dim` equal to ' | |
f'{self.w_space_dim}!\n' | |
f'But {latent_codes_shape} received!') | |
ws = torch.from_numpy(latent_codes).type(torch.FloatTensor) | |
ws = ws.to(self.run_device) | |
wps = self.model.truncation(ws) | |
results['w'] = latent_codes | |
results['wp'] = self.get_value(wps) | |
# Generate from W+ space. | |
elif latent_space_type == 'WP': | |
if not (len(latent_codes_shape) == 3 and | |
latent_codes_shape[0] <= self.batch_size and | |
latent_codes_shape[1] == self.num_layers and | |
latent_codes_shape[2] == self.w_space_dim): | |
raise ValueError(f'Latent_codes should be with shape [batch_size, ' | |
f'num_layers, w_space_dim], where `batch_size` no ' | |
f'larger than {self.batch_size}, `num_layers` equal ' | |
f'to {self.num_layers}, and `w_space_dim` equal to ' | |
f'{self.w_space_dim}!\n' | |
f'But {latent_codes_shape} received!') | |
wps = torch.from_numpy(latent_codes).type(torch.FloatTensor) | |
wps = wps.to(self.run_device) | |
results['wp'] = latent_codes | |
else: | |
raise ValueError(f'Latent space type `{latent_space_type}` is invalid!') | |
if generate_style: | |
for i in range(self.num_layers): | |
style = self.model.synthesis.__getattr__( | |
f'layer{i}').epilogue.style_mod.dense(wps[:, i, :]) | |
results[f'style{i:02d}'] = self.get_value(style) | |
if generate_image: | |
images = self.model.synthesis(wps) | |
results['image'] = self.get_value(images) | |
return results | |