Spaces:
Sleeping
Sleeping
remove some bike_bench code
Browse files- bike_bench_internal/benchmark_models/results/models/CTGAN.pkl +2 -2
- bike_bench_internal/benchmark_models/results/models/TVAE.pkl +2 -2
- bike_bench_internal/src/bikebench.egg-info/SOURCES.txt +11 -85
- bike_bench_internal/src/bikebench.egg-info/top_level.txt +1 -0
- bike_bench_internal/src/bikebench/benchmarking/benchmarking_utils.py +53 -23
- bike_bench_internal/src/bikebench/benchmarking/scoring.py +6 -4
- bike_bench_internal/src/bikebench/conditioning/conditioning.py +28 -21
- bike_bench_internal/src/bikebench/data_loading/data_loading.py +13 -2
- bike_bench_internal/src/bikebench/data_loading/dataverse_utils.py +15 -3
- bike_bench_internal/src/bikebench/design_evaluation/design_evaluation.py +65 -27
- bike_bench_internal/src/bikebench/prediction/aesthetics_predictor.py +6 -7
- bike_bench_internal/src/bikebench/transformation/framed.py +0 -3
- bike_bench_internal/src/bikebench/transformation/one_hot_encoding.py +12 -3
- bike_bench_internal/src/bikebench/transformation/ordered_columns.py +14 -11
- bike_bench_internal/src/bikebench/validation/bike_bench_validation_functions.py +46 -46
- bike_bench_internal/src/bikebench/xml_handling/bcad_to_bikebench.py +28 -3
- bike_bench_internal/src/resources/misc/ref_point.csv +50 -50
- bike_bench_internal/src/resources/models_and_scalers/aesthetics_model_weights.pt +2 -2
- bike_bench_internal/src/resources/models_and_scalers/aesthetics_scaler.pt +2 -2
bike_bench_internal/benchmark_models/results/models/CTGAN.pkl
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:493ee9d845adc3fb6ed9d26eadfda1b87e45bbf1f591050d4c389af1d45e37e9
|
| 3 |
+
size 4081377
|
bike_bench_internal/benchmark_models/results/models/TVAE.pkl
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:1e7ff6161cc5f0bf1c86acee3ca056e4067b3d734c2d67b1541ac128a08f7777
|
| 3 |
+
size 2284778
|
bike_bench_internal/src/bikebench.egg-info/SOURCES.txt
CHANGED
|
@@ -7,108 +7,34 @@ src/bikebench.egg-info/PKG-INFO
|
|
| 7 |
src/bikebench.egg-info/SOURCES.txt
|
| 8 |
src/bikebench.egg-info/dependency_links.txt
|
| 9 |
src/bikebench.egg-info/top_level.txt
|
| 10 |
-
src/bikebench/
|
| 11 |
-
src/bikebench/
|
| 12 |
-
src/bikebench/
|
| 13 |
-
src/bikebench/
|
| 14 |
-
src/bikebench/
|
| 15 |
-
src/bikebench/benchmark_models/libmoon/problem/__init__.py
|
| 16 |
-
src/bikebench/benchmark_models/libmoon/problem/mop.py
|
| 17 |
-
src/bikebench/benchmark_models/libmoon/problem/mtl/__init__.py
|
| 18 |
-
src/bikebench/benchmark_models/libmoon/problem/mtl/fair_classify.py
|
| 19 |
-
src/bikebench/benchmark_models/libmoon/problem/mtl/mnist.py
|
| 20 |
-
src/bikebench/benchmark_models/libmoon/problem/mtl/objectives.py
|
| 21 |
-
src/bikebench/benchmark_models/libmoon/problem/mtl/loaders/__init__.py
|
| 22 |
-
src/bikebench/benchmark_models/libmoon/problem/mtl/loaders/adult_loader.py
|
| 23 |
-
src/bikebench/benchmark_models/libmoon/problem/mtl/loaders/compas_loader.py
|
| 24 |
-
src/bikebench/benchmark_models/libmoon/problem/mtl/loaders/credit_loader.py
|
| 25 |
-
src/bikebench/benchmark_models/libmoon/problem/mtl/loaders/multimnist_loader.py
|
| 26 |
-
src/bikebench/benchmark_models/libmoon/problem/mtl/model/__init__.py
|
| 27 |
-
src/bikebench/benchmark_models/libmoon/problem/mtl/model/simple.py
|
| 28 |
-
src/bikebench/benchmark_models/libmoon/problem/synthetic/__init__.py
|
| 29 |
-
src/bikebench/benchmark_models/libmoon/problem/synthetic/dtlz.py
|
| 30 |
-
src/bikebench/benchmark_models/libmoon/problem/synthetic/maf.py
|
| 31 |
-
src/bikebench/benchmark_models/libmoon/problem/synthetic/re.py
|
| 32 |
-
src/bikebench/benchmark_models/libmoon/problem/synthetic/re_original.py
|
| 33 |
-
src/bikebench/benchmark_models/libmoon/problem/synthetic/vlmop.py
|
| 34 |
-
src/bikebench/benchmark_models/libmoon/problem/synthetic/wfg.py
|
| 35 |
-
src/bikebench/benchmark_models/libmoon/problem/synthetic/zdt.py
|
| 36 |
-
src/bikebench/benchmark_models/libmoon/solver/__init__.py
|
| 37 |
-
src/bikebench/benchmark_models/libmoon/solver/gradient/__init__.py
|
| 38 |
-
src/bikebench/benchmark_models/libmoon/solver/gradient/base_solver.py
|
| 39 |
-
src/bikebench/benchmark_models/libmoon/solver/gradient/core_solver.py
|
| 40 |
-
src/bikebench/benchmark_models/libmoon/solver/gradient/epo_solver.py
|
| 41 |
-
src/bikebench/benchmark_models/libmoon/solver/gradient/functions_evaluation.py
|
| 42 |
-
src/bikebench/benchmark_models/libmoon/solver/gradient/functions_hv_grad_3d.py
|
| 43 |
-
src/bikebench/benchmark_models/libmoon/solver/gradient/functions_hv_python3.py
|
| 44 |
-
src/bikebench/benchmark_models/libmoon/solver/gradient/gradhv.py
|
| 45 |
-
src/bikebench/benchmark_models/libmoon/solver/gradient/mgda_core.py
|
| 46 |
-
src/bikebench/benchmark_models/libmoon/solver/gradient/mgda_solver.py
|
| 47 |
-
src/bikebench/benchmark_models/libmoon/solver/gradient/min_norm_solvers_numpy.py
|
| 48 |
-
src/bikebench/benchmark_models/libmoon/solver/gradient/moosvgd.py
|
| 49 |
-
src/bikebench/benchmark_models/libmoon/solver/gradient/pmgda.py
|
| 50 |
-
src/bikebench/benchmark_models/libmoon/solver/gradient/pmtl.py
|
| 51 |
-
src/bikebench/benchmark_models/libmoon/solver/gradient/run/__init__.py
|
| 52 |
-
src/bikebench/benchmark_models/libmoon/solver/gradient/run/run_grad.py
|
| 53 |
-
src/bikebench/benchmark_models/libmoon/solver/gradient/utils/__init__.py
|
| 54 |
-
src/bikebench/benchmark_models/libmoon/solver/gradient/utils/util.py
|
| 55 |
-
src/bikebench/benchmark_models/libmoon/solver/mobo/__init__.py
|
| 56 |
-
src/bikebench/benchmark_models/libmoon/solver/mobo/dirhvego.py
|
| 57 |
-
src/bikebench/benchmark_models/libmoon/solver/mobo/mobod.py
|
| 58 |
-
src/bikebench/benchmark_models/libmoon/solver/mobo/utils/__init__.py
|
| 59 |
-
src/bikebench/benchmark_models/libmoon/solver/mobo/utils/termination.py
|
| 60 |
-
src/bikebench/benchmark_models/libmoon/solver/moea/__init__.py
|
| 61 |
-
src/bikebench/benchmark_models/libmoon/solver/moea/moead.py
|
| 62 |
-
src/bikebench/benchmark_models/libmoon/solver/moea/moead_pfl.py
|
| 63 |
-
src/bikebench/benchmark_models/libmoon/solver/moea/utils/__init__.py
|
| 64 |
-
src/bikebench/benchmark_models/libmoon/solver/moea/utils/decomposition.py
|
| 65 |
-
src/bikebench/benchmark_models/libmoon/solver/moea/utils/genetic_operator.py
|
| 66 |
-
src/bikebench/benchmark_models/libmoon/solver/moea/utils/population.py
|
| 67 |
-
src/bikebench/benchmark_models/libmoon/solver/moea/utils/termination.py
|
| 68 |
-
src/bikebench/benchmark_models/libmoon/solver/moea/utils/utils_ea.py
|
| 69 |
-
src/bikebench/benchmark_models/libmoon/solver/moea/utils/weight_vector.py
|
| 70 |
-
src/bikebench/benchmark_models/libmoon/solver/pfl/__init__.py
|
| 71 |
-
src/bikebench/benchmark_models/libmoon/solver/pfl/run.py
|
| 72 |
-
src/bikebench/benchmark_models/libmoon/solver/pfl/model/__init__.py
|
| 73 |
-
src/bikebench/benchmark_models/libmoon/solver/pfl/model/simple.py
|
| 74 |
-
src/bikebench/benchmark_models/libmoon/solver/psl/__init__.py
|
| 75 |
-
src/bikebench/benchmark_models/libmoon/solver/psl/run_mtl_condition.py
|
| 76 |
-
src/bikebench/benchmark_models/libmoon/solver/psl/run_mtl_psl.py
|
| 77 |
-
src/bikebench/benchmark_models/libmoon/solver/psl/run_simple_psl.py
|
| 78 |
-
src/bikebench/benchmark_models/libmoon/solver/psl/util.py
|
| 79 |
-
src/bikebench/benchmark_models/libmoon/solver/psl/model/__init__.py
|
| 80 |
-
src/bikebench/benchmark_models/libmoon/solver/psl/model/mtl.py
|
| 81 |
-
src/bikebench/benchmark_models/libmoon/solver/psl/model/simple.py
|
| 82 |
-
src/bikebench/benchmark_models/libmoon/util_global/__init__.py
|
| 83 |
-
src/bikebench/benchmark_models/libmoon/util_global/constant.py
|
| 84 |
-
src/bikebench/benchmark_models/libmoon/util_global/scalarization.py
|
| 85 |
-
src/bikebench/benchmark_models/libmoon/util_global/weight_factor/__init__.py
|
| 86 |
-
src/bikebench/benchmark_models/libmoon/util_global/weight_factor/das_dennis.py
|
| 87 |
-
src/bikebench/benchmark_models/libmoon/util_global/weight_factor/funs.py
|
| 88 |
-
src/bikebench/benchmark_models/libmoon/visulization/__init__.py
|
| 89 |
-
src/bikebench/benchmark_models/libmoon/visulization/util.py
|
| 90 |
-
src/bikebench/benchmark_models/libmoon/visulization/view_res.py
|
| 91 |
src/bikebench/conditioning/__init__.py
|
| 92 |
src/bikebench/conditioning/conditioning.py
|
| 93 |
src/bikebench/data_loading/__init__.py
|
| 94 |
src/bikebench/data_loading/data_loading.py
|
| 95 |
src/bikebench/data_loading/dataverse_utils.py
|
|
|
|
| 96 |
src/bikebench/design_evaluation/__init__.py
|
| 97 |
src/bikebench/design_evaluation/design_evaluation.py
|
| 98 |
-
src/bikebench/design_evaluation/score_report.py
|
| 99 |
-
src/bikebench/design_evaluation/scoring.py
|
| 100 |
src/bikebench/embedding/__init__.py
|
| 101 |
src/bikebench/embedding/clip_embedding_calculator.py
|
| 102 |
src/bikebench/embedding/dataset_rendering_tools.py
|
| 103 |
src/bikebench/embedding/embedding_predictor.py
|
| 104 |
-
src/bikebench/embedding/execute_emb.py
|
| 105 |
src/bikebench/ergonomics/__init__.py
|
| 106 |
src/bikebench/ergonomics/joint_angles.py
|
| 107 |
src/bikebench/prediction/__init__.py
|
| 108 |
src/bikebench/prediction/aero_predictor.py
|
| 109 |
-
src/bikebench/prediction/
|
| 110 |
src/bikebench/prediction/evaluators.py
|
|
|
|
| 111 |
src/bikebench/prediction/prediction_utils.py
|
|
|
|
|
|
|
|
|
|
| 112 |
src/bikebench/rendering/BikeCAD_server_client.py
|
| 113 |
src/bikebench/rendering/BikeCAD_server_manager.py
|
| 114 |
src/bikebench/rendering/__init__.py
|
|
|
|
| 7 |
src/bikebench.egg-info/SOURCES.txt
|
| 8 |
src/bikebench.egg-info/dependency_links.txt
|
| 9 |
src/bikebench.egg-info/top_level.txt
|
| 10 |
+
src/bikebench/benchmarking/__init__ .py
|
| 11 |
+
src/bikebench/benchmarking/benchmarker.py
|
| 12 |
+
src/bikebench/benchmarking/benchmarking_utils.py
|
| 13 |
+
src/bikebench/benchmarking/score_report.py
|
| 14 |
+
src/bikebench/benchmarking/scoring.py
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 15 |
src/bikebench/conditioning/__init__.py
|
| 16 |
src/bikebench/conditioning/conditioning.py
|
| 17 |
src/bikebench/data_loading/__init__.py
|
| 18 |
src/bikebench/data_loading/data_loading.py
|
| 19 |
src/bikebench/data_loading/dataverse_utils.py
|
| 20 |
+
src/bikebench/data_loading/execute_upload_missing.py
|
| 21 |
src/bikebench/design_evaluation/__init__.py
|
| 22 |
src/bikebench/design_evaluation/design_evaluation.py
|
|
|
|
|
|
|
| 23 |
src/bikebench/embedding/__init__.py
|
| 24 |
src/bikebench/embedding/clip_embedding_calculator.py
|
| 25 |
src/bikebench/embedding/dataset_rendering_tools.py
|
| 26 |
src/bikebench/embedding/embedding_predictor.py
|
|
|
|
| 27 |
src/bikebench/ergonomics/__init__.py
|
| 28 |
src/bikebench/ergonomics/joint_angles.py
|
| 29 |
src/bikebench/prediction/__init__.py
|
| 30 |
src/bikebench/prediction/aero_predictor.py
|
| 31 |
+
src/bikebench/prediction/aesthetics_predictor.py
|
| 32 |
src/bikebench/prediction/evaluators.py
|
| 33 |
+
src/bikebench/prediction/model_definitions.py
|
| 34 |
src/bikebench/prediction/prediction_utils.py
|
| 35 |
+
src/bikebench/prediction/structural_predictor.py
|
| 36 |
+
src/bikebench/prediction/usability_predictor.py
|
| 37 |
+
src/bikebench/prediction/validity_predictor.py
|
| 38 |
src/bikebench/rendering/BikeCAD_server_client.py
|
| 39 |
src/bikebench/rendering/BikeCAD_server_manager.py
|
| 40 |
src/bikebench/rendering/__init__.py
|
bike_bench_internal/src/bikebench.egg-info/top_level.txt
CHANGED
|
@@ -1,2 +1,3 @@
|
|
| 1 |
bikebench
|
|
|
|
| 2 |
resources
|
|
|
|
| 1 |
bikebench
|
| 2 |
+
biked_commons
|
| 3 |
resources
|
bike_bench_internal/src/bikebench/benchmarking/benchmarking_utils.py
CHANGED
|
@@ -8,10 +8,23 @@ from bikebench.conditioning import conditioning
|
|
| 8 |
from tqdm import trange, tqdm
|
| 9 |
from bikebench.transformation import ordered_columns
|
| 10 |
|
| 11 |
-
def
|
| 12 |
-
rider_conditions = conditioning.sample_riders(
|
| 13 |
-
use_case_conditions = conditioning.sample_use_case(
|
| 14 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 15 |
|
| 16 |
rider_conditions_repeated = rider_conditions.repeat_interleave(100, dim=0)
|
| 17 |
use_case_conditions_repeated = use_case_conditions.repeat_interleave(100, dim=0)
|
|
@@ -21,27 +34,37 @@ def get_test_conditions():
|
|
| 21 |
|
| 22 |
return conditions
|
| 23 |
|
| 24 |
-
def get_single_test_condition(idx=0, device="cpu"):
|
| 25 |
-
rider_condition = conditioning.sample_riders(100, split="test")
|
| 26 |
-
use_case_condition = conditioning.sample_use_case(100, split="test")
|
| 27 |
-
image_embedding = conditioning.sample_embedding(100, split="test")
|
| 28 |
-
|
| 29 |
rider_condition = rider_condition[idx].to(device)
|
| 30 |
use_case_condition = use_case_condition[idx].to(device)
|
| 31 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 32 |
|
| 33 |
-
|
| 34 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 35 |
|
| 36 |
-
def
|
| 37 |
data_columns = ordered_columns.bike_bench_columns
|
| 38 |
-
evaluations = get_standard_evaluations(
|
| 39 |
-
evaluator, requirement_names,
|
| 40 |
|
| 41 |
if evaluate_as_aggregate:
|
| 42 |
-
condition = get_test_conditions()
|
| 43 |
-
main_scorer = construct_scorer(MainScores, evaluations, data_columns,
|
| 44 |
-
detailed_scorer = construct_scorer(DetailedScores, evaluations, data_columns,
|
| 45 |
|
| 46 |
main_scores = main_scorer(result_tens, condition)
|
| 47 |
detailed_scores = detailed_scorer(result_tens, condition)
|
|
@@ -50,16 +73,17 @@ def evaluate(result_tens, device, evaluate_as_aggregate = False):
|
|
| 50 |
all_detailed_scores = []
|
| 51 |
all_evaluation_scores = []
|
| 52 |
|
| 53 |
-
main_scorer = construct_scorer(MainScores, evaluations, data_columns,
|
| 54 |
-
detailed_scorer = construct_scorer(DetailedScores, evaluations, data_columns,
|
| 55 |
for i in trange(100):
|
| 56 |
result_slice = result_tens[i*100:(i+1)*100]
|
| 57 |
-
condition = get_single_test_condition(i,
|
| 58 |
|
|
|
|
| 59 |
evaluation_scores = evaluator(result_slice, condition)
|
| 60 |
|
| 61 |
-
main_scores = main_scorer(result_slice
|
| 62 |
-
detailed_scores = detailed_scorer(result_slice
|
| 63 |
|
| 64 |
all_main_scores.append(main_scores)
|
| 65 |
all_detailed_scores.append(detailed_scores)
|
|
@@ -72,6 +96,12 @@ def evaluate(result_tens, device, evaluate_as_aggregate = False):
|
|
| 72 |
|
| 73 |
return main_scores, detailed_scores, all_evaluation_scores
|
| 74 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 75 |
# def get_condition_by_idx(idx=0):
|
| 76 |
# rider_condition = conditioning.sample_riders(10, split="test")
|
| 77 |
# use_case_condition = conditioning.sample_use_case(10, split="test")
|
|
|
|
| 8 |
from tqdm import trange, tqdm
|
| 9 |
from bikebench.transformation import ordered_columns
|
| 10 |
|
| 11 |
+
def get_train_conditions(n, randomize=True, device="cpu", mode = "embedding"):
|
| 12 |
+
rider_conditions = conditioning.sample_riders(n, split="train", randomize=randomize, device=device)
|
| 13 |
+
use_case_conditions = conditioning.sample_use_case(n, split="train", randomize=randomize, device=device)
|
| 14 |
+
|
| 15 |
+
if mode == "text":
|
| 16 |
+
texts = conditioning.sample_text(n, split="train", randomize=randomize)
|
| 17 |
+
conditions = {"Rider": rider_conditions, "Use Case": use_case_conditions, "Text": texts}
|
| 18 |
+
return conditions
|
| 19 |
+
elif mode == "embedding":
|
| 20 |
+
image_embeddings = conditioning.sample_embedding(n, split="train", randomize=randomize, device=device)
|
| 21 |
+
conditions = {"Rider": rider_conditions, "Use Case": use_case_conditions, "Embedding": image_embeddings}
|
| 22 |
+
return conditions
|
| 23 |
+
|
| 24 |
+
def get_test_conditions(device="cpu"):
|
| 25 |
+
rider_conditions = conditioning.sample_riders(100, split="test", device=device)
|
| 26 |
+
use_case_conditions = conditioning.sample_use_case(100, split="test", device=device)
|
| 27 |
+
image_embeddings = conditioning.sample_embedding(100, split="test", device=device)
|
| 28 |
|
| 29 |
rider_conditions_repeated = rider_conditions.repeat_interleave(100, dim=0)
|
| 30 |
use_case_conditions_repeated = use_case_conditions.repeat_interleave(100, dim=0)
|
|
|
|
| 34 |
|
| 35 |
return conditions
|
| 36 |
|
| 37 |
+
def get_single_test_condition(idx=0, device="cpu", mode = "embedding"):
|
| 38 |
+
rider_condition = conditioning.sample_riders(100, split="test", device=device)
|
| 39 |
+
use_case_condition = conditioning.sample_use_case(100, split="test", device=device)
|
|
|
|
|
|
|
| 40 |
rider_condition = rider_condition[idx].to(device)
|
| 41 |
use_case_condition = use_case_condition[idx].to(device)
|
| 42 |
+
if mode == "text":
|
| 43 |
+
text = conditioning.sample_text(100, split="test")
|
| 44 |
+
text = text[idx]
|
| 45 |
+
condition = {"Rider": rider_condition, "Use Case": use_case_condition, "Text": text}
|
| 46 |
+
return condition
|
| 47 |
+
|
| 48 |
+
elif mode == "embedding":
|
| 49 |
+
image_embedding = conditioning.sample_embedding(100, split="test", device=device)
|
| 50 |
+
|
| 51 |
|
| 52 |
+
image_embedding = image_embedding[idx].to(device)
|
| 53 |
+
|
| 54 |
+
condition = {"Rider": rider_condition, "Use Case": use_case_condition, "Embedding": image_embedding}
|
| 55 |
+
return condition
|
| 56 |
+
else:
|
| 57 |
+
raise ValueError("mode must be 'text' or 'embedding'")
|
| 58 |
|
| 59 |
+
def evaluate_designs(result_tens, evaluate_as_aggregate = False):
|
| 60 |
data_columns = ordered_columns.bike_bench_columns
|
| 61 |
+
evaluations = get_standard_evaluations("cpu")
|
| 62 |
+
evaluator, requirement_names, is_objective, is_conditional = construct_tensor_evaluator(evaluations, data_columns, device="cpu")
|
| 63 |
|
| 64 |
if evaluate_as_aggregate:
|
| 65 |
+
condition = get_test_conditions("cpu")
|
| 66 |
+
main_scorer = construct_scorer(MainScores, evaluations, data_columns, "cpu")
|
| 67 |
+
detailed_scorer = construct_scorer(DetailedScores, evaluations, data_columns, "cpu")
|
| 68 |
|
| 69 |
main_scores = main_scorer(result_tens, condition)
|
| 70 |
detailed_scores = detailed_scorer(result_tens, condition)
|
|
|
|
| 73 |
all_detailed_scores = []
|
| 74 |
all_evaluation_scores = []
|
| 75 |
|
| 76 |
+
main_scorer = construct_scorer(MainScores, evaluations, data_columns, "cpu")
|
| 77 |
+
detailed_scorer = construct_scorer(DetailedScores, evaluations, data_columns, "cpu")
|
| 78 |
for i in trange(100):
|
| 79 |
result_slice = result_tens[i*100:(i+1)*100]
|
| 80 |
+
condition = get_single_test_condition(i, "cpu")
|
| 81 |
|
| 82 |
+
result_slice = result_slice.detach().cpu()
|
| 83 |
evaluation_scores = evaluator(result_slice, condition)
|
| 84 |
|
| 85 |
+
main_scores = main_scorer(result_slice, condition, preevaluated_scores = evaluation_scores) #main scores is a series
|
| 86 |
+
detailed_scores = detailed_scorer(result_slice, condition, preevaluated_scores = evaluation_scores) #detailed scores is a series
|
| 87 |
|
| 88 |
all_main_scores.append(main_scores)
|
| 89 |
all_detailed_scores.append(detailed_scores)
|
|
|
|
| 96 |
|
| 97 |
return main_scores, detailed_scores, all_evaluation_scores
|
| 98 |
|
| 99 |
+
|
| 100 |
+
|
| 101 |
+
|
| 102 |
+
|
| 103 |
+
|
| 104 |
+
|
| 105 |
# def get_condition_by_idx(idx=0):
|
| 106 |
# rider_condition = conditioning.sample_riders(10, split="test")
|
| 107 |
# use_case_condition = conditioning.sample_use_case(10, split="test")
|
bike_bench_internal/src/bikebench/benchmarking/scoring.py
CHANGED
|
@@ -156,7 +156,7 @@ class AverageConstraintViolation(ScoringFunction):
|
|
| 156 |
return self.names
|
| 157 |
|
| 158 |
def evaluate(self, designs, objective_scores, constraint_scores, objective_names, constraint_names, obj_ref_point):
|
| 159 |
-
self.names = [f"
|
| 160 |
validity_boolean = constraint_scores > 0
|
| 161 |
return np.mean(np.sum(validity_boolean, axis=1))
|
| 162 |
|
|
@@ -170,7 +170,7 @@ class AverageNovelty(ScoringFunction):
|
|
| 170 |
self.reference_designs = self.scaler.transform(raw_ref)
|
| 171 |
|
| 172 |
def return_names(self) -> List[str]:
|
| 173 |
-
return ["
|
| 174 |
|
| 175 |
def evaluate(self, designs, objective_scores, constraint_scores, objective_names, constraint_names, obj_ref_point):
|
| 176 |
scaled_designs = self.scaler.transform(designs)
|
|
@@ -195,6 +195,8 @@ class DPPDiversity(ScoringFunction):
|
|
| 195 |
return ["Diversity ↓ (DPP)"]
|
| 196 |
|
| 197 |
def evaluate(self, designs, objective_scores, constraint_scores, objective_names, constraint_names, obj_ref_point):
|
|
|
|
|
|
|
| 198 |
|
| 199 |
# Convert to numpy and scale like AverageNovelty
|
| 200 |
X = np.asarray(designs, dtype=np.float64)
|
|
@@ -286,9 +288,9 @@ class MeanConstraintViolationMagnitude(ScoringFunction):
|
|
| 286 |
return meanscores
|
| 287 |
|
| 288 |
def construct_scorer(scoring_functions: List[ScoringFunction], evaluation_functions: List[EvaluationFunction], column_names: List[str], device: str = "cpu") -> callable:
|
| 289 |
-
evaluator, requirement_names,
|
| 290 |
requirement_names = np.array(requirement_names)
|
| 291 |
-
isobjective = torch.tensor(
|
| 292 |
objective_names = requirement_names[isobjective]
|
| 293 |
constraint_names = requirement_names[~isobjective]
|
| 294 |
|
|
|
|
| 156 |
return self.names
|
| 157 |
|
| 158 |
def evaluate(self, designs, objective_scores, constraint_scores, objective_names, constraint_names, obj_ref_point):
|
| 159 |
+
self.names = [f"Constraint Violation ↓"] #counts average number of violated constraints per design
|
| 160 |
validity_boolean = constraint_scores > 0
|
| 161 |
return np.mean(np.sum(validity_boolean, axis=1))
|
| 162 |
|
|
|
|
| 170 |
self.reference_designs = self.scaler.transform(raw_ref)
|
| 171 |
|
| 172 |
def return_names(self) -> List[str]:
|
| 173 |
+
return ["Novelty ↑"]
|
| 174 |
|
| 175 |
def evaluate(self, designs, objective_scores, constraint_scores, objective_names, constraint_names, obj_ref_point):
|
| 176 |
scaled_designs = self.scaler.transform(designs)
|
|
|
|
| 195 |
return ["Diversity ↓ (DPP)"]
|
| 196 |
|
| 197 |
def evaluate(self, designs, objective_scores, constraint_scores, objective_names, constraint_names, obj_ref_point):
|
| 198 |
+
#deduplicate designs
|
| 199 |
+
designs = np.unique(designs, axis=0)
|
| 200 |
|
| 201 |
# Convert to numpy and scale like AverageNovelty
|
| 202 |
X = np.asarray(designs, dtype=np.float64)
|
|
|
|
| 288 |
return meanscores
|
| 289 |
|
| 290 |
def construct_scorer(scoring_functions: List[ScoringFunction], evaluation_functions: List[EvaluationFunction], column_names: List[str], device: str = "cpu") -> callable:
|
| 291 |
+
evaluator, requirement_names, is_objective, is_conditional = construct_tensor_evaluator(evaluation_functions, column_names, device=device)
|
| 292 |
requirement_names = np.array(requirement_names)
|
| 293 |
+
isobjective = torch.tensor(is_objective, dtype=bool)
|
| 294 |
objective_names = requirement_names[isobjective]
|
| 295 |
constraint_names = requirement_names[~isobjective]
|
| 296 |
|
bike_bench_internal/src/bikebench/conditioning/conditioning.py
CHANGED
|
@@ -79,41 +79,48 @@ def _get_embed_tensor(split: str, device: torch.device = None):
|
|
| 79 |
cpu = _ensure_embed_cpu(split)
|
| 80 |
return _to_device_cached(cpu, _DEVICE_CACHE["embed"][split], device)
|
| 81 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 82 |
def sample_riders(num_samples: int, split="test",
|
| 83 |
randomize=False, device: torch.device = None):
|
|
|
|
|
|
|
|
|
|
| 84 |
data = _get_rider_tensor(split, device)
|
| 85 |
N = data.size(0)
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
else:
|
| 89 |
-
reps = num_samples // N + 1
|
| 90 |
-
idx = torch.arange(N, device=data.device).repeat(reps)[:num_samples]
|
| 91 |
return data[idx]
|
| 92 |
|
| 93 |
-
def sample_embedding(num_samples: int, split="test", device: torch.device = None):
|
|
|
|
|
|
|
|
|
|
|
|
|
| 94 |
data = _get_embed_tensor(split, device)
|
| 95 |
N = data.size(0)
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
else:
|
| 99 |
-
reps = num_samples // N + 1
|
| 100 |
-
idx = torch.arange(N, device=data.device).repeat(reps)[:num_samples]
|
| 101 |
return data[idx]
|
| 102 |
|
| 103 |
-
def sample_use_case(num_samples: int, split=None, device: torch.device = None):
|
|
|
|
|
|
|
| 104 |
onehot = torch.eye(3, dtype=torch.float32)
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
else:
|
| 108 |
-
reps = num_samples // 3 + 1
|
| 109 |
-
idx = torch.arange(3, device=onehot.device).repeat(reps)[:num_samples]
|
| 110 |
return onehot[idx]
|
| 111 |
|
| 112 |
def sample_text(num_samples, split="test", randomize=False):
|
| 113 |
text_data = _ensure_text(split)
|
| 114 |
if not text_data:
|
| 115 |
return []
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
return (text_data * reps)[:num_samples]
|
|
|
|
| 79 |
cpu = _ensure_embed_cpu(split)
|
| 80 |
return _to_device_cached(cpu, _DEVICE_CACHE["embed"][split], device)
|
| 81 |
|
| 82 |
+
def get_indices(N, num_samples, randomize=False):
|
| 83 |
+
if randomize:
|
| 84 |
+
idx = torch.randint(0, N, (num_samples,))
|
| 85 |
+
else:
|
| 86 |
+
reps = num_samples // N + 1
|
| 87 |
+
idx = torch.arange(N).repeat(reps)[:num_samples]
|
| 88 |
+
return idx
|
| 89 |
+
|
| 90 |
def sample_riders(num_samples: int, split="test",
|
| 91 |
randomize=False, device: torch.device = None):
|
| 92 |
+
|
| 93 |
+
if split=="test" and randomize:
|
| 94 |
+
print("Warning: Randomizing order of test data when benchmark expects fixed order!")
|
| 95 |
data = _get_rider_tensor(split, device)
|
| 96 |
N = data.size(0)
|
| 97 |
+
idx = get_indices(N, num_samples, randomize)
|
| 98 |
+
idx.to(device)
|
|
|
|
|
|
|
|
|
|
| 99 |
return data[idx]
|
| 100 |
|
| 101 |
+
def sample_embedding(num_samples: int, split="test", randomize = False, device: torch.device = None):
|
| 102 |
+
#warn if split is test and randomize is true
|
| 103 |
+
if split=="test" and randomize:
|
| 104 |
+
print("Warning: Randomizing order of test data when benchmark expects fixed order!")
|
| 105 |
+
|
| 106 |
data = _get_embed_tensor(split, device)
|
| 107 |
N = data.size(0)
|
| 108 |
+
idx = get_indices(N, num_samples, randomize)
|
| 109 |
+
idx.to(device)
|
|
|
|
|
|
|
|
|
|
| 110 |
return data[idx]
|
| 111 |
|
| 112 |
+
def sample_use_case(num_samples: int, split=None, randomize = False, device: torch.device = None):
|
| 113 |
+
if split=="test" and randomize:
|
| 114 |
+
print("Warning: Randomizing order of test data when benchmark expects fixed order!")
|
| 115 |
onehot = torch.eye(3, dtype=torch.float32)
|
| 116 |
+
idx = get_indices(3, num_samples, randomize)
|
| 117 |
+
idx.to(device)
|
|
|
|
|
|
|
|
|
|
| 118 |
return onehot[idx]
|
| 119 |
|
| 120 |
def sample_text(num_samples, split="test", randomize=False):
|
| 121 |
text_data = _ensure_text(split)
|
| 122 |
if not text_data:
|
| 123 |
return []
|
| 124 |
+
N = len(text_data)
|
| 125 |
+
idx = get_indices(N, num_samples, randomize)
|
| 126 |
+
return [text_data[i] for i in idx]
|
|
|
bike_bench_internal/src/bikebench/data_loading/data_loading.py
CHANGED
|
@@ -11,6 +11,7 @@ import requests
|
|
| 11 |
from tqdm import tqdm
|
| 12 |
|
| 13 |
from bikebench.resource_utils import datasets_path
|
|
|
|
| 14 |
|
| 15 |
# ------------------------------------------------------------------------------------
|
| 16 |
# Config
|
|
@@ -238,11 +239,21 @@ def load_bike_bench_test(*, repair: bool = False, doi: str = DATAVERSE_DOI):
|
|
| 238 |
|
| 239 |
def load_bike_bench_mixed_modality_train(*, repair: bool = False, doi: str = DATAVERSE_DOI):
|
| 240 |
path = download_if_missing("Generative_Modeling_Datasets/bike_bench_mixed_modality.csv", repair=repair, doi=doi)
|
| 241 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 242 |
|
| 243 |
def load_bike_bench_mixed_modality_test(*, repair: bool = False, doi: str = DATAVERSE_DOI):
|
| 244 |
path = download_if_missing("Generative_Modeling_Datasets/bike_bench_mixed_modality_test.csv", repair=repair, doi=doi)
|
| 245 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 246 |
|
| 247 |
# ---- Original_BIKED_Data (numbered helpers) ----
|
| 248 |
def _find_numbered_file(base_dir: Path, n: int, exts: set[str], paren_style: bool = False) -> str:
|
|
|
|
| 11 |
from tqdm import tqdm
|
| 12 |
|
| 13 |
from bikebench.resource_utils import datasets_path
|
| 14 |
+
from bikebench.transformation.one_hot_encoding import ONE_HOT_ENCODED_BIKEBENCH_COLUMNS, BOOLEAN_COLUMNS
|
| 15 |
|
| 16 |
# ------------------------------------------------------------------------------------
|
| 17 |
# Config
|
|
|
|
| 239 |
|
| 240 |
def load_bike_bench_mixed_modality_train(*, repair: bool = False, doi: str = DATAVERSE_DOI):
|
| 241 |
path = download_if_missing("Generative_Modeling_Datasets/bike_bench_mixed_modality.csv", repair=repair, doi=doi)
|
| 242 |
+
df = pd.read_csv(path, index_col=0)
|
| 243 |
+
categorical_cols = ONE_HOT_ENCODED_BIKEBENCH_COLUMNS
|
| 244 |
+
boolean_cols = BOOLEAN_COLUMNS
|
| 245 |
+
continuous_cols = df.columns.difference(categorical_cols + boolean_cols).tolist()
|
| 246 |
+
df[continuous_cols] = df[continuous_cols].astype(np.float32)
|
| 247 |
+
return df
|
| 248 |
|
| 249 |
def load_bike_bench_mixed_modality_test(*, repair: bool = False, doi: str = DATAVERSE_DOI):
|
| 250 |
path = download_if_missing("Generative_Modeling_Datasets/bike_bench_mixed_modality_test.csv", repair=repair, doi=doi)
|
| 251 |
+
df = pd.read_csv(path, index_col=0)
|
| 252 |
+
categorical_cols = ONE_HOT_ENCODED_BIKEBENCH_COLUMNS
|
| 253 |
+
boolean_cols = BOOLEAN_COLUMNS
|
| 254 |
+
continuous_cols = df.columns.difference(categorical_cols + boolean_cols).tolist()
|
| 255 |
+
df[continuous_cols] = df[continuous_cols].astype(np.float32)
|
| 256 |
+
return df
|
| 257 |
|
| 258 |
# ---- Original_BIKED_Data (numbered helpers) ----
|
| 259 |
def _find_numbered_file(base_dir: Path, n: int, exts: set[str], paren_style: bool = False) -> str:
|
bike_bench_internal/src/bikebench/data_loading/dataverse_utils.py
CHANGED
|
@@ -151,10 +151,18 @@ def _upload_new(doi: str, path: Path, directory_label: str) -> int:
|
|
| 151 |
r.raise_for_status()
|
| 152 |
return r.json()["data"]["files"][0]["dataFile"]["id"]
|
| 153 |
|
| 154 |
-
def _replace_file(file_id: int, path: Path) -> int:
|
| 155 |
url = f"{DV_API}/files/{file_id}/replace"
|
| 156 |
mime = mimetypes.guess_type(str(path))[0] or "application/octet-stream"
|
| 157 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 158 |
with path.open("rb") as fh:
|
| 159 |
files = {"file": (path.name, fh, mime)}
|
| 160 |
r = requests.post(url, data=data, files=files, headers=_headers(), timeout=600)
|
|
@@ -189,7 +197,11 @@ def upload_directory(
|
|
| 189 |
if full_key in remote and replace_existing:
|
| 190 |
fid = remote[full_key]["id"]
|
| 191 |
print(f"REPLACE {full_key} id={fid}")
|
| 192 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 193 |
elif full_key in remote and not replace_existing:
|
| 194 |
print(f"SKIP {full_key} (exists; replace_existing=False)")
|
| 195 |
else:
|
|
|
|
| 151 |
r.raise_for_status()
|
| 152 |
return r.json()["data"]["files"][0]["dataFile"]["id"]
|
| 153 |
|
| 154 |
+
def _replace_file(file_id: int, path: Path, *, directory_label: Optional[str] = None, label: Optional[str] = None, force: bool = True, restrict: bool = False) -> int:
|
| 155 |
url = f"{DV_API}/files/{file_id}/replace"
|
| 156 |
mime = mimetypes.guess_type(str(path))[0] or "application/octet-stream"
|
| 157 |
+
|
| 158 |
+
meta = {"forceReplace": bool(force), "restrict": bool(restrict)}
|
| 159 |
+
if directory_label is not None:
|
| 160 |
+
meta["directoryLabel"] = directory_label # <-- keep file in the same folder
|
| 161 |
+
if label is not None:
|
| 162 |
+
meta["label"] = label # optional; controls display name
|
| 163 |
+
|
| 164 |
+
data = {"jsonData": json.dumps(meta)}
|
| 165 |
+
|
| 166 |
with path.open("rb") as fh:
|
| 167 |
files = {"file": (path.name, fh, mime)}
|
| 168 |
r = requests.post(url, data=data, files=files, headers=_headers(), timeout=600)
|
|
|
|
| 197 |
if full_key in remote and replace_existing:
|
| 198 |
fid = remote[full_key]["id"]
|
| 199 |
print(f"REPLACE {full_key} id={fid}")
|
| 200 |
+
# compute the target folder and filename for metadata:
|
| 201 |
+
directory = str(PurePosixPath(full_key).parent)
|
| 202 |
+
directory = "" if directory == "." else directory
|
| 203 |
+
filename = PurePosixPath(full_key).name
|
| 204 |
+
_replace_file(fid, abs_path, directory_label=directory, label=filename)
|
| 205 |
elif full_key in remote and not replace_existing:
|
| 206 |
print(f"SKIP {full_key} (exists; replace_existing=False)")
|
| 207 |
else:
|
bike_bench_internal/src/bikebench/design_evaluation/design_evaluation.py
CHANGED
|
@@ -39,7 +39,11 @@ class EvaluationFunction(ABC):
|
|
| 39 |
pass
|
| 40 |
|
| 41 |
@abstractmethod # 1 = objective, 0 = constraint
|
| 42 |
-
def
|
|
|
|
|
|
|
|
|
|
|
|
|
| 43 |
pass
|
| 44 |
|
| 45 |
@abstractmethod
|
|
@@ -52,7 +56,7 @@ class AeroEvaluator(EvaluationFunction):
|
|
| 52 |
super().__init__(device, dtype)
|
| 53 |
state_path = models_and_scalers_path("aero_model_weights.pt")
|
| 54 |
scaler_path = models_and_scalers_path("aero_scaler.pt")
|
| 55 |
-
state = torch.load(state_path, weights_only=True, map_location=
|
| 56 |
self.model = get_aero_model(dropout_on=False).to(device)
|
| 57 |
self.model.load_state_dict(state)
|
| 58 |
self.preprocessor = Preprocessor(scaler_path=scaler_path, preprocess_fn=aero_predictor.calculate_features, device=device)
|
|
@@ -68,7 +72,10 @@ class AeroEvaluator(EvaluationFunction):
|
|
| 68 |
def return_names(self) -> List[str]:
|
| 69 |
return ['Drag Force (N)']
|
| 70 |
|
| 71 |
-
def
|
|
|
|
|
|
|
|
|
|
| 72 |
return [1]
|
| 73 |
|
| 74 |
def evaluate(self, designs: torch.Tensor, conditioning: dict = {}) -> torch.Tensor:
|
|
@@ -92,7 +99,7 @@ class FrameValidityEvaluator(EvaluationFunction):
|
|
| 92 |
super().__init__(device, dtype)
|
| 93 |
state_path = models_and_scalers_path("validity_model_weights.pt")
|
| 94 |
scaler_path = models_and_scalers_path("validity_scaler.pt")
|
| 95 |
-
state = torch.load(state_path, weights_only=True, map_location=
|
| 96 |
self.model = get_validity_model(dropout_on=False).to(device)
|
| 97 |
self.model.load_state_dict(state)
|
| 98 |
self.preprocessor = Preprocessor(scaler_path=scaler_path, preprocess_fn=None, device=device)
|
|
@@ -105,7 +112,10 @@ class FrameValidityEvaluator(EvaluationFunction):
|
|
| 105 |
def return_names(self) -> List[str]:
|
| 106 |
return ['Predicted Frame Validity']
|
| 107 |
|
| 108 |
-
def
|
|
|
|
|
|
|
|
|
|
| 109 |
return [0]
|
| 110 |
|
| 111 |
def evaluate(self, designs: torch.Tensor, conditioning: dict = {}) -> torch.Tensor:
|
|
@@ -122,7 +132,7 @@ class StructuralEvaluator(EvaluationFunction):
|
|
| 122 |
super().__init__(device, dtype)
|
| 123 |
state_path = models_and_scalers_path("structural_model_weights.pt")
|
| 124 |
scaler_path = models_and_scalers_path("structural_scaler.pt")
|
| 125 |
-
state = torch.load(state_path, weights_only=True, map_location=
|
| 126 |
self.model = get_structural_model(dropout_on = False).to(device)
|
| 127 |
self.model.load_state_dict(state)
|
| 128 |
self.preprocessor = Preprocessor(scaler_path=scaler_path, preprocess_fn=None, device=device)
|
|
@@ -134,8 +144,11 @@ class StructuralEvaluator(EvaluationFunction):
|
|
| 134 |
def return_names(self) -> List[str]:
|
| 135 |
return ['Mass (kg)', 'Planar Compliance Score', 'Transverse Compliance Score', 'Eccentric Compliance Score', 'Planar Safety Factor', 'Eccentric Safety Factor']
|
| 136 |
|
| 137 |
-
def
|
| 138 |
-
return [1,1,1,1,0,0]
|
|
|
|
|
|
|
|
|
|
| 139 |
|
| 140 |
def evaluate(self, designs: torch.Tensor, conditioning: dict = {}) -> torch.Tensor:
|
| 141 |
framed_tensor = self.converter(designs)
|
|
@@ -157,32 +170,32 @@ class AestheticsEvaluator(EvaluationFunction):
|
|
| 157 |
scaler_path = models_and_scalers_path("aesthetics_scaler.pt")
|
| 158 |
self.preprocessor = Preprocessor(
|
| 159 |
scaler_path=scaler_path,
|
| 160 |
-
preprocess_fn=aesthetics_predictor.
|
| 161 |
device=device
|
| 162 |
)
|
| 163 |
-
state = torch.load(state_path, weights_only=True, map_location=
|
| 164 |
self.model = get_aesthetics_model(dropout_on = False).to(device)
|
| 165 |
self.model.load_state_dict(state)
|
| 166 |
self.model.eval()
|
|
|
|
| 167 |
|
| 168 |
self.mode = mode # "Image", "Image Path", or "Text"
|
| 169 |
-
self.embedding_model = clip_embedding_calculator.ClipEmbeddingCalculator(
|
| 170 |
-
device=self.device,
|
| 171 |
-
batch_size=batch_size
|
| 172 |
-
)
|
| 173 |
|
| 174 |
def variable_names(self) -> List[str]:
|
| 175 |
return ordered_columns.bike_bench_columns
|
| 176 |
|
| 177 |
def return_names(self) -> List[str]:
|
| 178 |
# if self.mode in ["Image", "Image Path"]:
|
| 179 |
-
# return ["Cosine Distance
|
| 180 |
if self.mode == "Text":
|
| 181 |
-
return ["Cosine Distance
|
| 182 |
elif self.mode == "Embedding":
|
| 183 |
-
return ["Cosine Distance
|
| 184 |
|
| 185 |
-
def
|
|
|
|
|
|
|
|
|
|
| 186 |
return [1]
|
| 187 |
|
| 188 |
def evaluate(self,
|
|
@@ -219,6 +232,14 @@ class AestheticsEvaluator(EvaluationFunction):
|
|
| 219 |
texts = list(cond)
|
| 220 |
else:
|
| 221 |
raise TypeError("For Text mode, conditioning must be text or list of texts")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 222 |
embed = self.embedding_model.embed_texts(texts)
|
| 223 |
elif self.mode == "Embedding":
|
| 224 |
if isinstance(cond, torch.Tensor):
|
|
@@ -266,7 +287,10 @@ class ValidationEvaluator(EvaluationFunction):
|
|
| 266 |
def return_names(self) -> List[str]:
|
| 267 |
return self.validation_names
|
| 268 |
|
| 269 |
-
def
|
|
|
|
|
|
|
|
|
|
| 270 |
return [0] * len(self.validation_names)
|
| 271 |
|
| 272 |
def evaluate(self, designs: torch.Tensor, conditioning: dict = {}) -> torch.Tensor:
|
|
@@ -299,13 +323,22 @@ class ErgonomicsEvaluator(EvaluationFunction):
|
|
| 299 |
"Arm Too Long for Bike", "Saddle Too Far From Handle", "Torso Too Long for Bike",
|
| 300 |
"Saddle Too Far From Crank", "Upper Leg Too Long for Bike", "Lower Leg Too Long for Bike"]
|
| 301 |
|
| 302 |
-
def
|
| 303 |
if self.penalize_constraints:
|
| 304 |
return [1, 1, 1]
|
| 305 |
elif self.constraints_only:
|
| 306 |
return [0, 0, 0, 0, 0, 0]
|
| 307 |
else:
|
| 308 |
return [1, 1, 1, 0, 0, 0, 0, 0, 0]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 309 |
|
| 310 |
def evaluate(self, designs: torch.Tensor, conditioning: dict = {}) -> torch.Tensor:
|
| 311 |
assert "Rider" in conditioning, "Rider dimensions must be provided in conditioning to calculate ergonomics."
|
|
@@ -373,7 +406,7 @@ class UsabilityEvaluator(EvaluationFunction):
|
|
| 373 |
super().__init__(device, dtype)
|
| 374 |
scaler_path = models_and_scalers_path("usability_scaler.pt")
|
| 375 |
state_path = models_and_scalers_path("usability_model_weights.pt")
|
| 376 |
-
state = torch.load(state_path, weights_only=True, map_location=
|
| 377 |
self.model = get_usability_model(dropout_on=False).to(device)
|
| 378 |
self.model.load_state_dict(state)
|
| 379 |
self.preprocessor = Preprocessor(scaler_path=scaler_path, preprocess_fn=None, device=device)
|
|
@@ -385,8 +418,11 @@ class UsabilityEvaluator(EvaluationFunction):
|
|
| 385 |
return ['Usability Score']
|
| 386 |
|
| 387 |
|
| 388 |
-
def
|
| 389 |
return [1]
|
|
|
|
|
|
|
|
|
|
| 390 |
|
| 391 |
def evaluate(self, designs: torch.Tensor, conditioning: dict = {}) -> torch.Tensor:
|
| 392 |
designs = self.preprocessor(designs)
|
|
@@ -461,10 +497,12 @@ def construct_tensor_evaluator(evaluation_functions: List[EvaluationFunction], c
|
|
| 461 |
|
| 462 |
# Flatten all return names across evaluators
|
| 463 |
all_return_names = []
|
| 464 |
-
|
|
|
|
| 465 |
for evaluation_function in evaluation_functions:
|
| 466 |
all_return_names.extend(evaluation_function.return_names())
|
| 467 |
-
|
|
|
|
| 468 |
|
| 469 |
def evaluate_tensor(designs: torch.Tensor, conditioning={}) -> torch.Tensor:
|
| 470 |
n = designs.shape[0]
|
|
@@ -496,13 +534,13 @@ def construct_tensor_evaluator(evaluation_functions: List[EvaluationFunction], c
|
|
| 496 |
|
| 497 |
return results_tensor
|
| 498 |
|
| 499 |
-
return evaluate_tensor, all_return_names,
|
| 500 |
|
| 501 |
def construct_dataframe_evaluator(evaluation_functions: List[EvaluationFunction]):
|
| 502 |
|
| 503 |
def evaluate_dataframe(designs: pd.DataFrame, conditioning={}) -> pd.DataFrame:
|
| 504 |
designs_tensor = torch.tensor(designs.values, dtype=torch.float32)
|
| 505 |
-
tensor_evaluator, return_names,
|
| 506 |
results_tensor = tensor_evaluator(designs_tensor, conditioning)
|
| 507 |
|
| 508 |
results_df = pd.DataFrame(
|
|
@@ -511,7 +549,7 @@ def construct_dataframe_evaluator(evaluation_functions: List[EvaluationFunction]
|
|
| 511 |
index=designs.index
|
| 512 |
)
|
| 513 |
|
| 514 |
-
return results_df,
|
| 515 |
|
| 516 |
return evaluate_dataframe
|
| 517 |
|
|
|
|
| 39 |
pass
|
| 40 |
|
| 41 |
@abstractmethod # 1 = objective, 0 = constraint
|
| 42 |
+
def is_objective(self) -> List[str]:
|
| 43 |
+
pass
|
| 44 |
+
|
| 45 |
+
@abstractmethod
|
| 46 |
+
def is_conditional(self) -> List[str]:
|
| 47 |
pass
|
| 48 |
|
| 49 |
@abstractmethod
|
|
|
|
| 56 |
super().__init__(device, dtype)
|
| 57 |
state_path = models_and_scalers_path("aero_model_weights.pt")
|
| 58 |
scaler_path = models_and_scalers_path("aero_scaler.pt")
|
| 59 |
+
state = torch.load(state_path, weights_only=True, map_location=device)
|
| 60 |
self.model = get_aero_model(dropout_on=False).to(device)
|
| 61 |
self.model.load_state_dict(state)
|
| 62 |
self.preprocessor = Preprocessor(scaler_path=scaler_path, preprocess_fn=aero_predictor.calculate_features, device=device)
|
|
|
|
| 72 |
def return_names(self) -> List[str]:
|
| 73 |
return ['Drag Force (N)']
|
| 74 |
|
| 75 |
+
def is_objective(self) -> List[str]:
|
| 76 |
+
return [1]
|
| 77 |
+
|
| 78 |
+
def is_conditional(self) -> List[str]:
|
| 79 |
return [1]
|
| 80 |
|
| 81 |
def evaluate(self, designs: torch.Tensor, conditioning: dict = {}) -> torch.Tensor:
|
|
|
|
| 99 |
super().__init__(device, dtype)
|
| 100 |
state_path = models_and_scalers_path("validity_model_weights.pt")
|
| 101 |
scaler_path = models_and_scalers_path("validity_scaler.pt")
|
| 102 |
+
state = torch.load(state_path, weights_only=True, map_location=device)
|
| 103 |
self.model = get_validity_model(dropout_on=False).to(device)
|
| 104 |
self.model.load_state_dict(state)
|
| 105 |
self.preprocessor = Preprocessor(scaler_path=scaler_path, preprocess_fn=None, device=device)
|
|
|
|
| 112 |
def return_names(self) -> List[str]:
|
| 113 |
return ['Predicted Frame Validity']
|
| 114 |
|
| 115 |
+
def is_objective(self) -> List[str]:
|
| 116 |
+
return [0]
|
| 117 |
+
|
| 118 |
+
def is_conditional(self) -> List[str]:
|
| 119 |
return [0]
|
| 120 |
|
| 121 |
def evaluate(self, designs: torch.Tensor, conditioning: dict = {}) -> torch.Tensor:
|
|
|
|
| 132 |
super().__init__(device, dtype)
|
| 133 |
state_path = models_and_scalers_path("structural_model_weights.pt")
|
| 134 |
scaler_path = models_and_scalers_path("structural_scaler.pt")
|
| 135 |
+
state = torch.load(state_path, weights_only=True, map_location=device)
|
| 136 |
self.model = get_structural_model(dropout_on = False).to(device)
|
| 137 |
self.model.load_state_dict(state)
|
| 138 |
self.preprocessor = Preprocessor(scaler_path=scaler_path, preprocess_fn=None, device=device)
|
|
|
|
| 144 |
def return_names(self) -> List[str]:
|
| 145 |
return ['Mass (kg)', 'Planar Compliance Score', 'Transverse Compliance Score', 'Eccentric Compliance Score', 'Planar Safety Factor', 'Eccentric Safety Factor']
|
| 146 |
|
| 147 |
+
def is_objective(self) -> List[str]:
|
| 148 |
+
return [1, 1, 1, 1, 0, 0]
|
| 149 |
+
|
| 150 |
+
def is_conditional(self) -> List[str]:
|
| 151 |
+
return [0, 0, 0, 0, 0, 0]
|
| 152 |
|
| 153 |
def evaluate(self, designs: torch.Tensor, conditioning: dict = {}) -> torch.Tensor:
|
| 154 |
framed_tensor = self.converter(designs)
|
|
|
|
| 170 |
scaler_path = models_and_scalers_path("aesthetics_scaler.pt")
|
| 171 |
self.preprocessor = Preprocessor(
|
| 172 |
scaler_path=scaler_path,
|
| 173 |
+
preprocess_fn=aesthetics_predictor.remove_wall_thickness_and_material,
|
| 174 |
device=device
|
| 175 |
)
|
| 176 |
+
state = torch.load(state_path, weights_only=True, map_location=device)
|
| 177 |
self.model = get_aesthetics_model(dropout_on = False).to(device)
|
| 178 |
self.model.load_state_dict(state)
|
| 179 |
self.model.eval()
|
| 180 |
+
self.batch_size = batch_size
|
| 181 |
|
| 182 |
self.mode = mode # "Image", "Image Path", or "Text"
|
|
|
|
|
|
|
|
|
|
|
|
|
| 183 |
|
| 184 |
def variable_names(self) -> List[str]:
|
| 185 |
return ordered_columns.bike_bench_columns
|
| 186 |
|
| 187 |
def return_names(self) -> List[str]:
|
| 188 |
# if self.mode in ["Image", "Image Path"]:
|
| 189 |
+
# return ["Cosine Distance To Image"]
|
| 190 |
if self.mode == "Text":
|
| 191 |
+
return ["Cosine Distance To Text"]
|
| 192 |
elif self.mode == "Embedding":
|
| 193 |
+
return ["Cosine Distance To Embedding"]
|
| 194 |
|
| 195 |
+
def is_objective(self) -> List[str]:
|
| 196 |
+
return [1]
|
| 197 |
+
|
| 198 |
+
def is_conditional(self) -> List[str]:
|
| 199 |
return [1]
|
| 200 |
|
| 201 |
def evaluate(self,
|
|
|
|
| 232 |
texts = list(cond)
|
| 233 |
else:
|
| 234 |
raise TypeError("For Text mode, conditioning must be text or list of texts")
|
| 235 |
+
|
| 236 |
+
# Initialize embedding model if not already done
|
| 237 |
+
if not hasattr(self, 'embedding_model'):
|
| 238 |
+
self.embedding_model = clip_embedding_calculator.ClipEmbeddingCalculator(
|
| 239 |
+
device=self.device,
|
| 240 |
+
batch_size=self.batch_size
|
| 241 |
+
)
|
| 242 |
+
|
| 243 |
embed = self.embedding_model.embed_texts(texts)
|
| 244 |
elif self.mode == "Embedding":
|
| 245 |
if isinstance(cond, torch.Tensor):
|
|
|
|
| 287 |
def return_names(self) -> List[str]:
|
| 288 |
return self.validation_names
|
| 289 |
|
| 290 |
+
def is_objective(self) -> List[str]:
|
| 291 |
+
return [0] * len(self.validation_names)
|
| 292 |
+
|
| 293 |
+
def is_conditional(self) -> List[str]:
|
| 294 |
return [0] * len(self.validation_names)
|
| 295 |
|
| 296 |
def evaluate(self, designs: torch.Tensor, conditioning: dict = {}) -> torch.Tensor:
|
|
|
|
| 323 |
"Arm Too Long for Bike", "Saddle Too Far From Handle", "Torso Too Long for Bike",
|
| 324 |
"Saddle Too Far From Crank", "Upper Leg Too Long for Bike", "Lower Leg Too Long for Bike"]
|
| 325 |
|
| 326 |
+
def is_objective(self) -> List[str]:
|
| 327 |
if self.penalize_constraints:
|
| 328 |
return [1, 1, 1]
|
| 329 |
elif self.constraints_only:
|
| 330 |
return [0, 0, 0, 0, 0, 0]
|
| 331 |
else:
|
| 332 |
return [1, 1, 1, 0, 0, 0, 0, 0, 0]
|
| 333 |
+
|
| 334 |
+
def is_conditional(self) -> List[str]:
|
| 335 |
+
if self.penalize_constraints:
|
| 336 |
+
return [1, 1, 1]
|
| 337 |
+
elif self.constraints_only:
|
| 338 |
+
return [1, 1, 1, 1, 1, 1]
|
| 339 |
+
else:
|
| 340 |
+
return [1, 1, 1, 1, 1, 1, 1, 1, 1]
|
| 341 |
+
|
| 342 |
|
| 343 |
def evaluate(self, designs: torch.Tensor, conditioning: dict = {}) -> torch.Tensor:
|
| 344 |
assert "Rider" in conditioning, "Rider dimensions must be provided in conditioning to calculate ergonomics."
|
|
|
|
| 406 |
super().__init__(device, dtype)
|
| 407 |
scaler_path = models_and_scalers_path("usability_scaler.pt")
|
| 408 |
state_path = models_and_scalers_path("usability_model_weights.pt")
|
| 409 |
+
state = torch.load(state_path, weights_only=True, map_location=device)
|
| 410 |
self.model = get_usability_model(dropout_on=False).to(device)
|
| 411 |
self.model.load_state_dict(state)
|
| 412 |
self.preprocessor = Preprocessor(scaler_path=scaler_path, preprocess_fn=None, device=device)
|
|
|
|
| 418 |
return ['Usability Score']
|
| 419 |
|
| 420 |
|
| 421 |
+
def is_objective(self) -> List[str]:
|
| 422 |
return [1]
|
| 423 |
+
|
| 424 |
+
def is_conditional(self) -> List[str]:
|
| 425 |
+
return [0]
|
| 426 |
|
| 427 |
def evaluate(self, designs: torch.Tensor, conditioning: dict = {}) -> torch.Tensor:
|
| 428 |
designs = self.preprocessor(designs)
|
|
|
|
| 497 |
|
| 498 |
# Flatten all return names across evaluators
|
| 499 |
all_return_names = []
|
| 500 |
+
all_is_objective = []
|
| 501 |
+
all_is_conditional = []
|
| 502 |
for evaluation_function in evaluation_functions:
|
| 503 |
all_return_names.extend(evaluation_function.return_names())
|
| 504 |
+
all_is_objective.extend(evaluation_function.is_objective())
|
| 505 |
+
all_is_conditional.extend(evaluation_function.is_conditional())
|
| 506 |
|
| 507 |
def evaluate_tensor(designs: torch.Tensor, conditioning={}) -> torch.Tensor:
|
| 508 |
n = designs.shape[0]
|
|
|
|
| 534 |
|
| 535 |
return results_tensor
|
| 536 |
|
| 537 |
+
return evaluate_tensor, all_return_names, all_is_objective, all_is_conditional
|
| 538 |
|
| 539 |
def construct_dataframe_evaluator(evaluation_functions: List[EvaluationFunction]):
|
| 540 |
|
| 541 |
def evaluate_dataframe(designs: pd.DataFrame, conditioning={}) -> pd.DataFrame:
|
| 542 |
designs_tensor = torch.tensor(designs.values, dtype=torch.float32)
|
| 543 |
+
tensor_evaluator, return_names, is_objective, all_is_conditional = construct_tensor_evaluator(evaluation_functions, list(designs.columns))
|
| 544 |
results_tensor = tensor_evaluator(designs_tensor, conditioning)
|
| 545 |
|
| 546 |
results_df = pd.DataFrame(
|
|
|
|
| 549 |
index=designs.index
|
| 550 |
)
|
| 551 |
|
| 552 |
+
return results_df, is_objective, all_is_conditional
|
| 553 |
|
| 554 |
return evaluate_dataframe
|
| 555 |
|
bike_bench_internal/src/bikebench/prediction/aesthetics_predictor.py
CHANGED
|
@@ -6,11 +6,10 @@ from bikebench.resource_utils import models_and_scalers_path
|
|
| 6 |
from bikebench.prediction.prediction_utils import TorchStandardScaler
|
| 7 |
|
| 8 |
|
| 9 |
-
def
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
x = torch.cat((first_chunk, second_chunk), dim=1)
|
| 14 |
return x
|
| 15 |
|
| 16 |
class ResidualBlock(nn.Module):
|
|
@@ -55,7 +54,7 @@ class ResidualNetwork(nn.Module):
|
|
| 55 |
|
| 56 |
def get_aesthetics_model(dropout_on = False):
|
| 57 |
if dropout_on:
|
| 58 |
-
model = ResidualNetwork(
|
| 59 |
else:
|
| 60 |
-
model = ResidualNetwork(
|
| 61 |
return model
|
|
|
|
| 6 |
from bikebench.prediction.prediction_utils import TorchStandardScaler
|
| 7 |
|
| 8 |
|
| 9 |
+
def remove_wall_thickness_and_material(x, device):
|
| 10 |
+
indices_to_drop = [30, 31, 32, 33, 34, 35, 36, 55, 56, 57]
|
| 11 |
+
indices_to_keep = [i for i in range(x.shape[1]) if i not in indices_to_drop]
|
| 12 |
+
x = x[:, indices_to_keep]
|
|
|
|
| 13 |
return x
|
| 14 |
|
| 15 |
class ResidualBlock(nn.Module):
|
|
|
|
| 54 |
|
| 55 |
def get_aesthetics_model(dropout_on = False):
|
| 56 |
if dropout_on:
|
| 57 |
+
model = ResidualNetwork(73, 512, layer_size=256, layers_per_block=2, num_blocks=3)
|
| 58 |
else:
|
| 59 |
+
model = ResidualNetwork(73, 512, layer_size=256, layers_per_block=2, num_blocks=3)
|
| 60 |
return model
|
bike_bench_internal/src/bikebench/transformation/framed.py
CHANGED
|
@@ -64,9 +64,6 @@ BIKEBENCH_TO_FRAMED_IDENTICAL = {
|
|
| 64 |
MATERIALS = {"MATERIAL OHCLASS: ALUMINIUM": "Aluminum",
|
| 65 |
"MATERIAL OHCLASS: STEEL": "Steel",
|
| 66 |
"MATERIAL OHCLASS: TITANIUM": "Titanium",
|
| 67 |
-
"MATERIAL OHCLASS: CARBON": "Steel", # Overridden to Steel
|
| 68 |
-
"MATERIAL OHCLASS: BAMBOO": "Steel", # Overridden to Steel
|
| 69 |
-
"MATERIAL OHCLASS: OTHER": "Steel" # Overridden to Steel
|
| 70 |
}
|
| 71 |
def clip_to_framed(X_clip):
|
| 72 |
X_framed = pd.DataFrame()
|
|
|
|
| 64 |
MATERIALS = {"MATERIAL OHCLASS: ALUMINIUM": "Aluminum",
|
| 65 |
"MATERIAL OHCLASS: STEEL": "Steel",
|
| 66 |
"MATERIAL OHCLASS: TITANIUM": "Titanium",
|
|
|
|
|
|
|
|
|
|
| 67 |
}
|
| 68 |
def clip_to_framed(X_clip):
|
| 69 |
X_framed = pd.DataFrame()
|
bike_bench_internal/src/bikebench/transformation/one_hot_encoding.py
CHANGED
|
@@ -6,6 +6,7 @@ import pandas as pd
|
|
| 6 |
ONE_HOT_ENCODED_BIKEBENCH_COLUMNS: List[str] = [
|
| 7 |
'MATERIAL',
|
| 8 |
'Head tube type',
|
|
|
|
| 9 |
'RIM_STYLE front',
|
| 10 |
'RIM_STYLE rear',
|
| 11 |
'Handlebar style',
|
|
@@ -17,9 +18,6 @@ ONE_HOT_ENCODED_BIKEBENCH_COLUMNS: List[str] = [
|
|
| 17 |
ALL_CATEGORIES = {
|
| 18 |
'MATERIAL': [
|
| 19 |
'ALUMINIUM',
|
| 20 |
-
'BAMBOO',
|
| 21 |
-
'CARBON',
|
| 22 |
-
'OTHER',
|
| 23 |
'STEEL',
|
| 24 |
'TITANIUM'
|
| 25 |
],
|
|
@@ -29,6 +27,11 @@ ALL_CATEGORIES = {
|
|
| 29 |
'2',
|
| 30 |
'3'
|
| 31 |
],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 32 |
'RIM_STYLE front': [
|
| 33 |
'DISC',
|
| 34 |
'SPOKED',
|
|
@@ -127,6 +130,12 @@ def encode_to_continuous(df: pd.DataFrame) -> pd.DataFrame:
|
|
| 127 |
for col in BOOLEAN_COLUMNS:
|
| 128 |
if col in out.columns:
|
| 129 |
out[col] = out[col].astype(float)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 130 |
|
| 131 |
return out.astype(np.float32)
|
| 132 |
|
|
|
|
| 6 |
ONE_HOT_ENCODED_BIKEBENCH_COLUMNS: List[str] = [
|
| 7 |
'MATERIAL',
|
| 8 |
'Head tube type',
|
| 9 |
+
'Down tube type',
|
| 10 |
'RIM_STYLE front',
|
| 11 |
'RIM_STYLE rear',
|
| 12 |
'Handlebar style',
|
|
|
|
| 18 |
ALL_CATEGORIES = {
|
| 19 |
'MATERIAL': [
|
| 20 |
'ALUMINIUM',
|
|
|
|
|
|
|
|
|
|
| 21 |
'STEEL',
|
| 22 |
'TITANIUM'
|
| 23 |
],
|
|
|
|
| 27 |
'2',
|
| 28 |
'3'
|
| 29 |
],
|
| 30 |
+
'Down tube type': [
|
| 31 |
+
'0',
|
| 32 |
+
'1',
|
| 33 |
+
'2'
|
| 34 |
+
],
|
| 35 |
'RIM_STYLE front': [
|
| 36 |
'DISC',
|
| 37 |
'SPOKED',
|
|
|
|
| 130 |
for col in BOOLEAN_COLUMNS:
|
| 131 |
if col in out.columns:
|
| 132 |
out[col] = out[col].astype(float)
|
| 133 |
+
|
| 134 |
+
#replace any non-floats with 0.0
|
| 135 |
+
for col in out.columns:
|
| 136 |
+
if out[col].dtype == object:
|
| 137 |
+
out[col] = pd.to_numeric(out[col], errors='coerce').fillna(0.0)
|
| 138 |
+
print(f"⚠️ Warning: Column '{col}' contained non-numeric values which were converted to 0.0")
|
| 139 |
|
| 140 |
return out.astype(np.float32)
|
| 141 |
|
bike_bench_internal/src/bikebench/transformation/ordered_columns.py
CHANGED
|
@@ -10,17 +10,17 @@ bike_bench_columns = ['Seatpost LENGTH', 'CS textfield', 'BB textfield', 'Stack'
|
|
| 10 |
'Wall thickness Head tube', 'Wall thickness Down tube',
|
| 11 |
'Wall thickness Chain stay', 'Wall thickness Seat stay',
|
| 12 |
'Wall thickness Seat tube', 'Wheel diameter front', 'RDBSD',
|
| 13 |
-
'Wheel diameter rear', 'FDBSD', '
|
| 14 |
-
'Wheel cut', 'Front Fender include', 'Rear Fender include',
|
| 15 |
'BELTorCHAIN', 'Number of cogs', 'Number of chainrings',
|
| 16 |
'FIRST color R_RGB', 'FIRST color G_RGB', 'FIRST color B_RGB',
|
| 17 |
'SPOKES composite front', 'SPOKES composite rear', 'SBLADEW front',
|
| 18 |
-
'SBLADEW rear', 'Saddle length', 'Saddle height',
|
| 19 |
-
'MATERIAL OHCLASS: ALUMINIUM',
|
| 20 |
-
'MATERIAL OHCLASS: CARBON', 'MATERIAL OHCLASS: OTHER',
|
| 21 |
'MATERIAL OHCLASS: STEEL', 'MATERIAL OHCLASS: TITANIUM',
|
| 22 |
'Head tube type OHCLASS: 0', 'Head tube type OHCLASS: 1',
|
| 23 |
'Head tube type OHCLASS: 2', 'Head tube type OHCLASS: 3',
|
|
|
|
|
|
|
| 24 |
'RIM_STYLE front OHCLASS: DISC', 'RIM_STYLE front OHCLASS: SPOKED',
|
| 25 |
'RIM_STYLE front OHCLASS: TRISPOKE', 'RIM_STYLE rear OHCLASS: DISC',
|
| 26 |
'RIM_STYLE rear OHCLASS: SPOKED', 'RIM_STYLE rear OHCLASS: TRISPOKE',
|
|
@@ -34,9 +34,6 @@ bike_bench_columns = ['Seatpost LENGTH', 'CS textfield', 'BB textfield', 'Stack'
|
|
| 34 |
oh_columns = [
|
| 35 |
[
|
| 36 |
"MATERIAL OHCLASS: ALUMINIUM",
|
| 37 |
-
"MATERIAL OHCLASS: BAMBOO",
|
| 38 |
-
"MATERIAL OHCLASS: CARBON",
|
| 39 |
-
"MATERIAL OHCLASS: OTHER",
|
| 40 |
"MATERIAL OHCLASS: STEEL",
|
| 41 |
"MATERIAL OHCLASS: TITANIUM",
|
| 42 |
],
|
|
@@ -46,6 +43,11 @@ oh_columns = [
|
|
| 46 |
"Head tube type OHCLASS: 2",
|
| 47 |
"Head tube type OHCLASS: 3",
|
| 48 |
],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 49 |
[
|
| 50 |
"RIM_STYLE front OHCLASS: DISC",
|
| 51 |
"RIM_STYLE front OHCLASS: SPOKED",
|
|
@@ -81,9 +83,6 @@ oh_columns = [
|
|
| 81 |
|
| 82 |
oh_bool_columns = [
|
| 83 |
"MATERIAL OHCLASS: ALUMINIUM",
|
| 84 |
-
"MATERIAL OHCLASS: BAMBOO",
|
| 85 |
-
"MATERIAL OHCLASS: CARBON",
|
| 86 |
-
"MATERIAL OHCLASS: OTHER",
|
| 87 |
"MATERIAL OHCLASS: STEEL",
|
| 88 |
"MATERIAL OHCLASS: TITANIUM",
|
| 89 |
|
|
@@ -92,6 +91,10 @@ oh_bool_columns = [
|
|
| 92 |
"Head tube type OHCLASS: 2",
|
| 93 |
"Head tube type OHCLASS: 3",
|
| 94 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 95 |
"RIM_STYLE front OHCLASS: DISC",
|
| 96 |
"RIM_STYLE front OHCLASS: SPOKED",
|
| 97 |
"RIM_STYLE front OHCLASS: TRISPOKE",
|
|
|
|
| 10 |
'Wall thickness Head tube', 'Wall thickness Down tube',
|
| 11 |
'Wall thickness Chain stay', 'Wall thickness Seat stay',
|
| 12 |
'Wall thickness Seat tube', 'Wheel diameter front', 'RDBSD',
|
| 13 |
+
'Wheel diameter rear', 'FDBSD', 'BB length', 'Wheel cut',
|
|
|
|
| 14 |
'BELTorCHAIN', 'Number of cogs', 'Number of chainrings',
|
| 15 |
'FIRST color R_RGB', 'FIRST color G_RGB', 'FIRST color B_RGB',
|
| 16 |
'SPOKES composite front', 'SPOKES composite rear', 'SBLADEW front',
|
| 17 |
+
'SBLADEW rear', 'Saddle length', 'Saddle height',
|
| 18 |
+
'MATERIAL OHCLASS: ALUMINIUM',
|
|
|
|
| 19 |
'MATERIAL OHCLASS: STEEL', 'MATERIAL OHCLASS: TITANIUM',
|
| 20 |
'Head tube type OHCLASS: 0', 'Head tube type OHCLASS: 1',
|
| 21 |
'Head tube type OHCLASS: 2', 'Head tube type OHCLASS: 3',
|
| 22 |
+
'Down tube type OHCLASS: 0', 'Down tube type OHCLASS: 1',
|
| 23 |
+
'Down tube type OHCLASS: 2',
|
| 24 |
'RIM_STYLE front OHCLASS: DISC', 'RIM_STYLE front OHCLASS: SPOKED',
|
| 25 |
'RIM_STYLE front OHCLASS: TRISPOKE', 'RIM_STYLE rear OHCLASS: DISC',
|
| 26 |
'RIM_STYLE rear OHCLASS: SPOKED', 'RIM_STYLE rear OHCLASS: TRISPOKE',
|
|
|
|
| 34 |
oh_columns = [
|
| 35 |
[
|
| 36 |
"MATERIAL OHCLASS: ALUMINIUM",
|
|
|
|
|
|
|
|
|
|
| 37 |
"MATERIAL OHCLASS: STEEL",
|
| 38 |
"MATERIAL OHCLASS: TITANIUM",
|
| 39 |
],
|
|
|
|
| 43 |
"Head tube type OHCLASS: 2",
|
| 44 |
"Head tube type OHCLASS: 3",
|
| 45 |
],
|
| 46 |
+
[
|
| 47 |
+
"Down tube type OHCLASS: 0",
|
| 48 |
+
"Down tube type OHCLASS: 1",
|
| 49 |
+
"Down tube type OHCLASS: 2",
|
| 50 |
+
],
|
| 51 |
[
|
| 52 |
"RIM_STYLE front OHCLASS: DISC",
|
| 53 |
"RIM_STYLE front OHCLASS: SPOKED",
|
|
|
|
| 83 |
|
| 84 |
oh_bool_columns = [
|
| 85 |
"MATERIAL OHCLASS: ALUMINIUM",
|
|
|
|
|
|
|
|
|
|
| 86 |
"MATERIAL OHCLASS: STEEL",
|
| 87 |
"MATERIAL OHCLASS: TITANIUM",
|
| 88 |
|
|
|
|
| 91 |
"Head tube type OHCLASS: 2",
|
| 92 |
"Head tube type OHCLASS: 3",
|
| 93 |
|
| 94 |
+
"Down tube type OHCLASS: 0",
|
| 95 |
+
"Down tube type OHCLASS: 1",
|
| 96 |
+
"Down tube type OHCLASS: 2",
|
| 97 |
+
|
| 98 |
"RIM_STYLE front OHCLASS: DISC",
|
| 99 |
"RIM_STYLE front OHCLASS: SPOKED",
|
| 100 |
"RIM_STYLE front OHCLASS: TRISPOKE",
|
bike_bench_internal/src/bikebench/validation/bike_bench_validation_functions.py
CHANGED
|
@@ -25,42 +25,42 @@ ZERO_IS_VALID_COLS = ['FIRST color R_RGB',
|
|
| 25 |
'FIRST color G_RGB', 'FIRST color B_RGB']
|
| 26 |
|
| 27 |
class SaddleHeightTooSmall(ValidationFunction):
|
| 28 |
-
def friendly_name(self) -> str: return "Saddle
|
| 29 |
def variable_names(self) -> List[str]: return ["Saddle height"]
|
| 30 |
def validate(self, ctx: FeatureStore) -> torch.Tensor:
|
| 31 |
return 100.0 - ctx.col("Saddle height")
|
| 32 |
|
| 33 |
|
| 34 |
class SaddleCollidesWithSeatTube(ValidationFunction):
|
| 35 |
-
def friendly_name(self) -> str: return "Saddle
|
| 36 |
def variable_names(self) -> List[str]: return ["Saddle height", "Seat tube length"]
|
| 37 |
def validate(self, ctx: FeatureStore) -> torch.Tensor:
|
| 38 |
return ctx.col("Seat tube length") + 40.0 - ctx.col("Saddle height")
|
| 39 |
|
| 40 |
|
| 41 |
class SaddleTooShort(ValidationFunction):
|
| 42 |
-
def friendly_name(self) -> str: return "Saddle
|
| 43 |
def variable_names(self) -> List[str]: return ["Saddle length"]
|
| 44 |
def validate(self, ctx: FeatureStore) -> torch.Tensor:
|
| 45 |
return 228.0 - ctx.col("Saddle length")
|
| 46 |
|
| 47 |
|
| 48 |
class HeadAngleOverLimit(ValidationFunction):
|
| 49 |
-
def friendly_name(self) -> str: return "Head
|
| 50 |
def variable_names(self) -> List[str]: return ["Head angle"]
|
| 51 |
def validate(self, ctx: FeatureStore) -> torch.Tensor:
|
| 52 |
return ctx.col("Head angle") - 180.0
|
| 53 |
|
| 54 |
|
| 55 |
class SeatAngleOverLimit(ValidationFunction):
|
| 56 |
-
def friendly_name(self) -> str: return "Seat
|
| 57 |
def variable_names(self) -> List[str]: return ["Seat angle"]
|
| 58 |
def validate(self, ctx: FeatureStore) -> torch.Tensor:
|
| 59 |
return ctx.col("Seat angle") - 180.0
|
| 60 |
|
| 61 |
|
| 62 |
class SeatPostTooShort(ValidationFunction):
|
| 63 |
-
def friendly_name(self) -> str: return "Seat
|
| 64 |
def variable_names(self) -> List[str]:
|
| 65 |
return ["Seat tube length", "Seatpost LENGTH", "Saddle height", "Seat angle"]
|
| 66 |
def validate(self, ctx: FeatureStore) -> torch.Tensor:
|
|
@@ -73,7 +73,7 @@ class SeatPostTooShort(ValidationFunction):
|
|
| 73 |
|
| 74 |
|
| 75 |
class SeatPostTooLong(ValidationFunction):
|
| 76 |
-
def friendly_name(self) -> str: return "Seat
|
| 77 |
def variable_names(self) -> List[str]:
|
| 78 |
return ["Seatpost LENGTH", "Saddle height", "Seat angle"]
|
| 79 |
def validate(self, ctx: FeatureStore) -> torch.Tensor:
|
|
@@ -83,7 +83,7 @@ class SeatPostTooLong(ValidationFunction):
|
|
| 83 |
|
| 84 |
|
| 85 |
class RearWheelInnerDiameterTooSmall(ValidationFunction):
|
| 86 |
-
def friendly_name(self) -> str: return "Rear Wheel
|
| 87 |
def variable_names(self) -> List[str]: return ["Wheel diameter rear", "RDBSD"]
|
| 88 |
def validate(self, ctx: FeatureStore) -> torch.Tensor:
|
| 89 |
inner_d = ctx.col("Wheel diameter rear") - 2.0 * ctx.col("RDBSD")
|
|
@@ -91,7 +91,7 @@ class RearWheelInnerDiameterTooSmall(ValidationFunction):
|
|
| 91 |
|
| 92 |
|
| 93 |
class FrontWheelInnerDiameterTooSmall(ValidationFunction):
|
| 94 |
-
def friendly_name(self) -> str: return "Front Wheel
|
| 95 |
def variable_names(self) -> List[str]: return ["Wheel diameter front", "FDBSD"]
|
| 96 |
def validate(self, ctx: FeatureStore) -> torch.Tensor:
|
| 97 |
inner_d = ctx.col("Wheel diameter front") - 2.0 * ctx.col("FDBSD")
|
|
@@ -99,14 +99,14 @@ class FrontWheelInnerDiameterTooSmall(ValidationFunction):
|
|
| 99 |
|
| 100 |
|
| 101 |
class SeatTubeExtensionLongerThanSeatTube(ValidationFunction):
|
| 102 |
-
def friendly_name(self) -> str: return "Seat
|
| 103 |
def variable_names(self) -> List[str]: return ["Seat tube length", "Seat tube extension2"]
|
| 104 |
def validate(self, ctx: FeatureStore) -> torch.Tensor:
|
| 105 |
return ctx.col("Seat tube extension2") - ctx.col("Seat tube length")
|
| 106 |
|
| 107 |
|
| 108 |
class HeadTubeUpperExtensionAndLowerExtensionOverlap(ValidationFunction):
|
| 109 |
-
def friendly_name(self) -> str: return "Head
|
| 110 |
def variable_names(self) -> List[str]:
|
| 111 |
return ["Head tube length textfield", "Head tube upper extension2", "Head tube lower extension2"]
|
| 112 |
def validate(self, ctx: FeatureStore) -> torch.Tensor:
|
|
@@ -114,14 +114,14 @@ class HeadTubeUpperExtensionAndLowerExtensionOverlap(ValidationFunction):
|
|
| 114 |
|
| 115 |
|
| 116 |
class SeatStayJunctionLongerThanSeatTube(ValidationFunction):
|
| 117 |
-
def friendly_name(self) -> str: return "Seat
|
| 118 |
def variable_names(self) -> List[str]: return ["Seat tube length", "Seat stay junction0"]
|
| 119 |
def validate(self, ctx: FeatureStore) -> torch.Tensor:
|
| 120 |
return ctx.col("Seat stay junction0") - ctx.col("Seat tube length")
|
| 121 |
|
| 122 |
|
| 123 |
class NonNegativeParameterIsNegative(ValidationFunction):
|
| 124 |
-
def friendly_name(self) -> str: return "Non-negative
|
| 125 |
def variable_names(self) -> List[str]: return POSITIVE_COLS
|
| 126 |
def validate(self, ctx: 'FeatureStore') -> torch.Tensor:
|
| 127 |
X = torch.stack([ctx.col(c) for c in POSITIVE_COLS], dim=1) # (n, k)
|
|
@@ -135,21 +135,21 @@ class NonNegativeParameterIsNegative(ValidationFunction):
|
|
| 135 |
|
| 136 |
|
| 137 |
class ChainStaySmallerThanRearWheelRadius(ValidationFunction):
|
| 138 |
-
def friendly_name(self) -> str: return "Chain
|
| 139 |
def variable_names(self) -> List[str]: return ["CS textfield", "Wheel diameter rear"]
|
| 140 |
def validate(self, ctx: FeatureStore) -> torch.Tensor:
|
| 141 |
return (ctx.col("Wheel diameter rear") * 0.5) - ctx.col("CS textfield")
|
| 142 |
|
| 143 |
|
| 144 |
class ChainStayShorterThanBBDrop(ValidationFunction):
|
| 145 |
-
def friendly_name(self) -> str: return "Chain
|
| 146 |
def variable_names(self) -> List[str]: return ["CS textfield", "BB textfield"]
|
| 147 |
def validate(self, ctx: FeatureStore) -> torch.Tensor:
|
| 148 |
return ctx.col("BB textfield") - ctx.col("CS textfield")
|
| 149 |
|
| 150 |
|
| 151 |
class SeatStaySmallerThanRearWheelRadius(ValidationFunction):
|
| 152 |
-
def friendly_name(self) -> str: return "Seat
|
| 153 |
def variable_names(self) -> List[str]:
|
| 154 |
return ["CS textfield", "BB textfield","Seat tube length", "Seat stay junction0", "Seat angle", "Wheel diameter rear"]
|
| 155 |
def validate(self, ctx: FeatureStore) -> torch.Tensor:
|
|
@@ -166,9 +166,9 @@ class SeatStaySmallerThanRearWheelRadius(ValidationFunction):
|
|
| 166 |
return (ctx.col("Wheel diameter rear") * 0.5) - g
|
| 167 |
|
| 168 |
|
| 169 |
-
class
|
| 170 |
def friendly_name(self) -> str:
|
| 171 |
-
return "Seat Tube
|
| 172 |
|
| 173 |
def variable_names(self) -> List[str]:
|
| 174 |
return [
|
|
@@ -206,7 +206,7 @@ class SeatTubeIntersectsRearWheel(ValidationFunction):
|
|
| 206 |
|
| 207 |
|
| 208 |
class DownTubeCantReachHeadTube(ValidationFunction):
|
| 209 |
-
def friendly_name(self) -> str: return "Down
|
| 210 |
def variable_names(self) -> List[str]:
|
| 211 |
return ["Stack", "Head tube length textfield", "Head tube lower extension2", "Head angle", "DT Length"]
|
| 212 |
def validate(self, ctx: FeatureStore) -> torch.Tensor:
|
|
@@ -215,7 +215,7 @@ class DownTubeCantReachHeadTube(ValidationFunction):
|
|
| 215 |
|
| 216 |
class RearWheelCutoutSeversSeatTube(ValidationFunction):
|
| 217 |
def friendly_name(self) -> str:
|
| 218 |
-
return "Rear
|
| 219 |
|
| 220 |
def variable_names(self) -> List[str]:
|
| 221 |
return [
|
|
@@ -249,8 +249,8 @@ class RearWheelCutoutSeversSeatTube(ValidationFunction):
|
|
| 249 |
q = torch.where(aero_mask, q_true, q_false)
|
| 250 |
return (wheel_cut * 0.5) - q
|
| 251 |
|
| 252 |
-
class
|
| 253 |
-
def friendly_name(self) -> str: return "Foot
|
| 254 |
def variable_names(self) -> List[str]:
|
| 255 |
return ["Stack", "Head tube length textfield", "Head tube lower extension2", "Head angle",
|
| 256 |
"BB textfield", "DT Length", "FORK0R", "Wheel diameter front", "Wheel diameter rear"]
|
|
@@ -264,14 +264,14 @@ class FootIntersectsFrontWheel(ValidationFunction):
|
|
| 264 |
|
| 265 |
|
| 266 |
class CrankHitsGroundInLowestPosition(ValidationFunction):
|
| 267 |
-
def friendly_name(self) -> str: return "Crank
|
| 268 |
def variable_names(self) -> List[str]: return ["BB textfield", "Wheel diameter rear"]
|
| 269 |
def validate(self, ctx: FeatureStore) -> torch.Tensor:
|
| 270 |
return (187.5 + ctx.col("BB textfield")) - (ctx.col("Wheel diameter rear") * 0.5)
|
| 271 |
|
| 272 |
|
| 273 |
-
class
|
| 274 |
-
def friendly_name(self) -> str: return "RGB
|
| 275 |
def variable_names(self) -> List[str]:
|
| 276 |
return ["FIRST color R_RGB", "FIRST color G_RGB", "FIRST color B_RGB"]
|
| 277 |
def validate(self, ctx: FeatureStore) -> torch.Tensor:
|
|
@@ -285,14 +285,14 @@ class RGBvalueGreaterThan255(ValidationFunction):
|
|
| 285 |
|
| 286 |
|
| 287 |
class ChainStaysIntersect(ValidationFunction):
|
| 288 |
-
def friendly_name(self) -> str: return "Chain
|
| 289 |
def variable_names(self) -> List[str]: return ["csd", "Chain stay position on BB","BB length"]
|
| 290 |
def validate(self, ctx: FeatureStore) -> torch.Tensor:
|
| 291 |
return (ctx.col("csd")*0.5 + ctx.col("Chain stay position on BB")) - (ctx.col("BB length")*0.5)
|
| 292 |
|
| 293 |
|
| 294 |
class TubeWallThicknessExceedsRadius(ValidationFunction):
|
| 295 |
-
def friendly_name(self) -> str: return "Tube
|
| 296 |
def variable_names(self) -> List[str]:
|
| 297 |
return [
|
| 298 |
"ttd", "Wall thickness Top tube",
|
|
@@ -312,8 +312,8 @@ class TubeWallThicknessExceedsRadius(ValidationFunction):
|
|
| 312 |
return torch.sum(torch.clamp_min(violation, 0.0), dim=1)
|
| 313 |
|
| 314 |
|
| 315 |
-
class
|
| 316 |
-
def friendly_name(self) -> str: return "Seat
|
| 317 |
def variable_names(self) -> List[str]: return ["std", "Wall thickness Seat tube"]
|
| 318 |
def validate(self, ctx: FeatureStore) -> torch.Tensor:
|
| 319 |
inner_d = ctx.col("std") - ctx.col("Wall thickness Seat tube")
|
|
@@ -321,7 +321,7 @@ class SeatTubeInnerDiameterThinnerThanSeatPostOuterDiameter(ValidationFunction):
|
|
| 321 |
|
| 322 |
|
| 323 |
class DownTubeImproperlyJoinsHeadTube(ValidationFunction):
|
| 324 |
-
def friendly_name(self) -> str: return "Down
|
| 325 |
def variable_names(self) -> List[str]:
|
| 326 |
return ["Stack", "Head tube length textfield", "Head tube lower extension2", "Head angle",
|
| 327 |
"DT Length", "dtd", "htd"]
|
|
@@ -347,7 +347,7 @@ class DownTubeImproperlyJoinsHeadTube(ValidationFunction):
|
|
| 347 |
|
| 348 |
|
| 349 |
class TopTubeImproperlyJoinsHeadTube(ValidationFunction):
|
| 350 |
-
def friendly_name(self) -> str: return "Top
|
| 351 |
def variable_names(self) -> List[str]:
|
| 352 |
return ["Stack", "Head tube length textfield", "Head tube lower extension2", "Head tube upper extension2",
|
| 353 |
"Seat tube extension2", "Head angle", "Seat angle", "DT Length", "ttd", "htd","Seat tube length"]
|
|
@@ -376,7 +376,7 @@ class TopTubeImproperlyJoinsHeadTube(ValidationFunction):
|
|
| 376 |
|
| 377 |
|
| 378 |
class TopTubeImproperlyJoinsSeatTube(ValidationFunction):
|
| 379 |
-
def friendly_name(self) -> str: return "Top
|
| 380 |
def variable_names(self) -> List[str]:
|
| 381 |
return ["Stack", "Head tube length textfield", "Head tube lower extension2", "Head tube upper extension2",
|
| 382 |
"Seat tube extension2", "Head angle", "Seat angle", "DT Length", "ttd", "std","Seat tube length"]
|
|
@@ -405,8 +405,8 @@ class TopTubeImproperlyJoinsSeatTube(ValidationFunction):
|
|
| 405 |
return L1 + L2 - stux + below_0_pen + above_pi_pen + seatpost_clamp_default_offset
|
| 406 |
|
| 407 |
|
| 408 |
-
class
|
| 409 |
-
def friendly_name(self) -> str: return "Down
|
| 410 |
def variable_names(self) -> List[str]:
|
| 411 |
return ["Stack", "Head tube length textfield", "Head tube lower extension2", "Head angle",
|
| 412 |
"DT Length", "BB textfield", "FORK0R", "Wheel diameter front", "Wheel diameter rear", "dtd"]
|
|
@@ -427,7 +427,7 @@ class DownTubeIntersectsFrontWheel(ValidationFunction):
|
|
| 427 |
|
| 428 |
|
| 429 |
class SaddleHitsTopTube(ValidationFunction):
|
| 430 |
-
def friendly_name(self) -> str: return "Saddle
|
| 431 |
def variable_names(self) -> List[str]:
|
| 432 |
return ["Stack", "Head tube length textfield", "Head tube lower extension2", "Head tube upper extension2",
|
| 433 |
"Seat tube extension2", "Head angle", "Seat angle", "DT Length", "ttd", "std",
|
|
@@ -465,7 +465,7 @@ class SaddleHitsTopTube(ValidationFunction):
|
|
| 465 |
|
| 466 |
|
| 467 |
class SaddleHitsHeadTube(ValidationFunction):
|
| 468 |
-
def friendly_name(self) -> str: return "Saddle
|
| 469 |
def variable_names(self) -> List[str]:
|
| 470 |
return ["Stack", "Head tube length textfield", "Head tube lower extension2", "Head tube upper extension2",
|
| 471 |
"Seat tube extension2", "Head angle", "Seat angle", "DT Length", "ttd", "htd",
|
|
@@ -519,19 +519,19 @@ bike_bench_validation_functions: List[ValidationFunction] = [
|
|
| 519 |
ChainStaySmallerThanRearWheelRadius(),
|
| 520 |
ChainStayShorterThanBBDrop(),
|
| 521 |
SeatStaySmallerThanRearWheelRadius(),
|
| 522 |
-
|
| 523 |
DownTubeCantReachHeadTube(),
|
| 524 |
RearWheelCutoutSeversSeatTube(),
|
| 525 |
-
|
| 526 |
CrankHitsGroundInLowestPosition(),
|
| 527 |
-
|
| 528 |
ChainStaysIntersect(),
|
| 529 |
TubeWallThicknessExceedsRadius(),
|
| 530 |
-
|
| 531 |
DownTubeImproperlyJoinsHeadTube(),
|
| 532 |
TopTubeImproperlyJoinsHeadTube(),
|
| 533 |
TopTubeImproperlyJoinsSeatTube(),
|
| 534 |
-
|
| 535 |
SaddleHitsTopTube(),
|
| 536 |
SaddleHitsHeadTube(),
|
| 537 |
]
|
|
@@ -553,19 +553,19 @@ difficult_validation_functions: List[ValidationFunction] = [
|
|
| 553 |
# ChainStaySmallerThanRearWheelRadius(),
|
| 554 |
# ChainStayShorterThanBBDrop(),
|
| 555 |
# SeatStaySmallerThanRearWheelRadius(),
|
| 556 |
-
|
| 557 |
# DownTubeCantReachHeadTube(),
|
| 558 |
# RearWheelCutoutSeversSeatTube(),
|
| 559 |
-
|
| 560 |
# CrankHitsGroundInLowestPosition(),
|
| 561 |
-
#
|
| 562 |
# ChainStaysIntersect(),
|
| 563 |
# TubeWallThicknessExceedsRadius(),
|
| 564 |
-
|
| 565 |
DownTubeImproperlyJoinsHeadTube(),
|
| 566 |
# TopTubeImproperlyJoinsHeadTube(),
|
| 567 |
TopTubeImproperlyJoinsSeatTube(),
|
| 568 |
-
#
|
| 569 |
# SaddleHitsTopTube(),
|
| 570 |
# SaddleHitsHeadTube(),
|
| 571 |
]
|
|
|
|
| 25 |
'FIRST color G_RGB', 'FIRST color B_RGB']
|
| 26 |
|
| 27 |
class SaddleHeightTooSmall(ValidationFunction):
|
| 28 |
+
def friendly_name(self) -> str: return "Saddle Height Too Small"
|
| 29 |
def variable_names(self) -> List[str]: return ["Saddle height"]
|
| 30 |
def validate(self, ctx: FeatureStore) -> torch.Tensor:
|
| 31 |
return 100.0 - ctx.col("Saddle height")
|
| 32 |
|
| 33 |
|
| 34 |
class SaddleCollidesWithSeatTube(ValidationFunction):
|
| 35 |
+
def friendly_name(self) -> str: return "Saddle Collides With Seat Tube"
|
| 36 |
def variable_names(self) -> List[str]: return ["Saddle height", "Seat tube length"]
|
| 37 |
def validate(self, ctx: FeatureStore) -> torch.Tensor:
|
| 38 |
return ctx.col("Seat tube length") + 40.0 - ctx.col("Saddle height")
|
| 39 |
|
| 40 |
|
| 41 |
class SaddleTooShort(ValidationFunction):
|
| 42 |
+
def friendly_name(self) -> str: return "Saddle Too Short"
|
| 43 |
def variable_names(self) -> List[str]: return ["Saddle length"]
|
| 44 |
def validate(self, ctx: FeatureStore) -> torch.Tensor:
|
| 45 |
return 228.0 - ctx.col("Saddle length")
|
| 46 |
|
| 47 |
|
| 48 |
class HeadAngleOverLimit(ValidationFunction):
|
| 49 |
+
def friendly_name(self) -> str: return "Head Angle Over Limit"
|
| 50 |
def variable_names(self) -> List[str]: return ["Head angle"]
|
| 51 |
def validate(self, ctx: FeatureStore) -> torch.Tensor:
|
| 52 |
return ctx.col("Head angle") - 180.0
|
| 53 |
|
| 54 |
|
| 55 |
class SeatAngleOverLimit(ValidationFunction):
|
| 56 |
+
def friendly_name(self) -> str: return "Seat Angle Over Limit"
|
| 57 |
def variable_names(self) -> List[str]: return ["Seat angle"]
|
| 58 |
def validate(self, ctx: FeatureStore) -> torch.Tensor:
|
| 59 |
return ctx.col("Seat angle") - 180.0
|
| 60 |
|
| 61 |
|
| 62 |
class SeatPostTooShort(ValidationFunction):
|
| 63 |
+
def friendly_name(self) -> str: return "Seat Post Too Short"
|
| 64 |
def variable_names(self) -> List[str]:
|
| 65 |
return ["Seat tube length", "Seatpost LENGTH", "Saddle height", "Seat angle"]
|
| 66 |
def validate(self, ctx: FeatureStore) -> torch.Tensor:
|
|
|
|
| 73 |
|
| 74 |
|
| 75 |
class SeatPostTooLong(ValidationFunction):
|
| 76 |
+
def friendly_name(self) -> str: return "Seat Post Too Long"
|
| 77 |
def variable_names(self) -> List[str]:
|
| 78 |
return ["Seatpost LENGTH", "Saddle height", "Seat angle"]
|
| 79 |
def validate(self, ctx: FeatureStore) -> torch.Tensor:
|
|
|
|
| 83 |
|
| 84 |
|
| 85 |
class RearWheelInnerDiameterTooSmall(ValidationFunction):
|
| 86 |
+
def friendly_name(self) -> str: return "Rear Wheel Inner Diameter Too Small"
|
| 87 |
def variable_names(self) -> List[str]: return ["Wheel diameter rear", "RDBSD"]
|
| 88 |
def validate(self, ctx: FeatureStore) -> torch.Tensor:
|
| 89 |
inner_d = ctx.col("Wheel diameter rear") - 2.0 * ctx.col("RDBSD")
|
|
|
|
| 91 |
|
| 92 |
|
| 93 |
class FrontWheelInnerDiameterTooSmall(ValidationFunction):
|
| 94 |
+
def friendly_name(self) -> str: return "Front Wheel Inner Diameter Too Small"
|
| 95 |
def variable_names(self) -> List[str]: return ["Wheel diameter front", "FDBSD"]
|
| 96 |
def validate(self, ctx: FeatureStore) -> torch.Tensor:
|
| 97 |
inner_d = ctx.col("Wheel diameter front") - 2.0 * ctx.col("FDBSD")
|
|
|
|
| 99 |
|
| 100 |
|
| 101 |
class SeatTubeExtensionLongerThanSeatTube(ValidationFunction):
|
| 102 |
+
def friendly_name(self) -> str: return "Seat Tube Extension Longer Than Seat Tube"
|
| 103 |
def variable_names(self) -> List[str]: return ["Seat tube length", "Seat tube extension2"]
|
| 104 |
def validate(self, ctx: FeatureStore) -> torch.Tensor:
|
| 105 |
return ctx.col("Seat tube extension2") - ctx.col("Seat tube length")
|
| 106 |
|
| 107 |
|
| 108 |
class HeadTubeUpperExtensionAndLowerExtensionOverlap(ValidationFunction):
|
| 109 |
+
def friendly_name(self) -> str: return "Head Tube Upper Extension And Lower Extension Overlap"
|
| 110 |
def variable_names(self) -> List[str]:
|
| 111 |
return ["Head tube length textfield", "Head tube upper extension2", "Head tube lower extension2"]
|
| 112 |
def validate(self, ctx: FeatureStore) -> torch.Tensor:
|
|
|
|
| 114 |
|
| 115 |
|
| 116 |
class SeatStayJunctionLongerThanSeatTube(ValidationFunction):
|
| 117 |
+
def friendly_name(self) -> str: return "Seat Stay Junction Longer Than Seat Tube"
|
| 118 |
def variable_names(self) -> List[str]: return ["Seat tube length", "Seat stay junction0"]
|
| 119 |
def validate(self, ctx: FeatureStore) -> torch.Tensor:
|
| 120 |
return ctx.col("Seat stay junction0") - ctx.col("Seat tube length")
|
| 121 |
|
| 122 |
|
| 123 |
class NonNegativeParameterIsNegative(ValidationFunction):
|
| 124 |
+
def friendly_name(self) -> str: return "Non-negative Parameter Is Negative"
|
| 125 |
def variable_names(self) -> List[str]: return POSITIVE_COLS
|
| 126 |
def validate(self, ctx: 'FeatureStore') -> torch.Tensor:
|
| 127 |
X = torch.stack([ctx.col(c) for c in POSITIVE_COLS], dim=1) # (n, k)
|
|
|
|
| 135 |
|
| 136 |
|
| 137 |
class ChainStaySmallerThanRearWheelRadius(ValidationFunction):
|
| 138 |
+
def friendly_name(self) -> str: return "Chain Stay Smaller Than Rear Wheel Radius"
|
| 139 |
def variable_names(self) -> List[str]: return ["CS textfield", "Wheel diameter rear"]
|
| 140 |
def validate(self, ctx: FeatureStore) -> torch.Tensor:
|
| 141 |
return (ctx.col("Wheel diameter rear") * 0.5) - ctx.col("CS textfield")
|
| 142 |
|
| 143 |
|
| 144 |
class ChainStayShorterThanBBDrop(ValidationFunction):
|
| 145 |
+
def friendly_name(self) -> str: return "Chain Stay Shorter Than BB Drop"
|
| 146 |
def variable_names(self) -> List[str]: return ["CS textfield", "BB textfield"]
|
| 147 |
def validate(self, ctx: FeatureStore) -> torch.Tensor:
|
| 148 |
return ctx.col("BB textfield") - ctx.col("CS textfield")
|
| 149 |
|
| 150 |
|
| 151 |
class SeatStaySmallerThanRearWheelRadius(ValidationFunction):
|
| 152 |
+
def friendly_name(self) -> str: return "Seat Stay Smaller Than Rear Wheel Radius"
|
| 153 |
def variable_names(self) -> List[str]:
|
| 154 |
return ["CS textfield", "BB textfield","Seat tube length", "Seat stay junction0", "Seat angle", "Wheel diameter rear"]
|
| 155 |
def validate(self, ctx: FeatureStore) -> torch.Tensor:
|
|
|
|
| 166 |
return (ctx.col("Wheel diameter rear") * 0.5) - g
|
| 167 |
|
| 168 |
|
| 169 |
+
class SeatTubeCollidesWithRearWheel(ValidationFunction):
|
| 170 |
def friendly_name(self) -> str:
|
| 171 |
+
return "Seat Tube Collides With Rear Wheel"
|
| 172 |
|
| 173 |
def variable_names(self) -> List[str]:
|
| 174 |
return [
|
|
|
|
| 206 |
|
| 207 |
|
| 208 |
class DownTubeCantReachHeadTube(ValidationFunction):
|
| 209 |
+
def friendly_name(self) -> str: return "Down Tube Can't Reach Head Tube"
|
| 210 |
def variable_names(self) -> List[str]:
|
| 211 |
return ["Stack", "Head tube length textfield", "Head tube lower extension2", "Head angle", "DT Length"]
|
| 212 |
def validate(self, ctx: FeatureStore) -> torch.Tensor:
|
|
|
|
| 215 |
|
| 216 |
class RearWheelCutoutSeversSeatTube(ValidationFunction):
|
| 217 |
def friendly_name(self) -> str:
|
| 218 |
+
return "Rear Wheel Cutout Severs Seat Tube"
|
| 219 |
|
| 220 |
def variable_names(self) -> List[str]:
|
| 221 |
return [
|
|
|
|
| 249 |
q = torch.where(aero_mask, q_true, q_false)
|
| 250 |
return (wheel_cut * 0.5) - q
|
| 251 |
|
| 252 |
+
class FootCollidesWithFrontWheel(ValidationFunction):
|
| 253 |
+
def friendly_name(self) -> str: return "Foot Collides With Front Wheel"
|
| 254 |
def variable_names(self) -> List[str]:
|
| 255 |
return ["Stack", "Head tube length textfield", "Head tube lower extension2", "Head angle",
|
| 256 |
"BB textfield", "DT Length", "FORK0R", "Wheel diameter front", "Wheel diameter rear"]
|
|
|
|
| 264 |
|
| 265 |
|
| 266 |
class CrankHitsGroundInLowestPosition(ValidationFunction):
|
| 267 |
+
def friendly_name(self) -> str: return "Crank Hits Ground In Lowest Position"
|
| 268 |
def variable_names(self) -> List[str]: return ["BB textfield", "Wheel diameter rear"]
|
| 269 |
def validate(self, ctx: FeatureStore) -> torch.Tensor:
|
| 270 |
return (187.5 + ctx.col("BB textfield")) - (ctx.col("Wheel diameter rear") * 0.5)
|
| 271 |
|
| 272 |
|
| 273 |
+
class RGBValueGreaterThan255(ValidationFunction):
|
| 274 |
+
def friendly_name(self) -> str: return "RGB Value Greater Than 255"
|
| 275 |
def variable_names(self) -> List[str]:
|
| 276 |
return ["FIRST color R_RGB", "FIRST color G_RGB", "FIRST color B_RGB"]
|
| 277 |
def validate(self, ctx: FeatureStore) -> torch.Tensor:
|
|
|
|
| 285 |
|
| 286 |
|
| 287 |
class ChainStaysIntersect(ValidationFunction):
|
| 288 |
+
def friendly_name(self) -> str: return "Chain Stays Intersect"
|
| 289 |
def variable_names(self) -> List[str]: return ["csd", "Chain stay position on BB","BB length"]
|
| 290 |
def validate(self, ctx: FeatureStore) -> torch.Tensor:
|
| 291 |
return (ctx.col("csd")*0.5 + ctx.col("Chain stay position on BB")) - (ctx.col("BB length")*0.5)
|
| 292 |
|
| 293 |
|
| 294 |
class TubeWallThicknessExceedsRadius(ValidationFunction):
|
| 295 |
+
def friendly_name(self) -> str: return "Tube Wall Thickness Exceeds Radius"
|
| 296 |
def variable_names(self) -> List[str]:
|
| 297 |
return [
|
| 298 |
"ttd", "Wall thickness Top tube",
|
|
|
|
| 312 |
return torch.sum(torch.clamp_min(violation, 0.0), dim=1)
|
| 313 |
|
| 314 |
|
| 315 |
+
class SeatTubeTooNarrowForSeatPost(ValidationFunction):
|
| 316 |
+
def friendly_name(self) -> str: return "Seat Tube Too Narrow For Seat Post"
|
| 317 |
def variable_names(self) -> List[str]: return ["std", "Wall thickness Seat tube"]
|
| 318 |
def validate(self, ctx: FeatureStore) -> torch.Tensor:
|
| 319 |
inner_d = ctx.col("std") - ctx.col("Wall thickness Seat tube")
|
|
|
|
| 321 |
|
| 322 |
|
| 323 |
class DownTubeImproperlyJoinsHeadTube(ValidationFunction):
|
| 324 |
+
def friendly_name(self) -> str: return "Down Tube Improperly Joins Head Tube"
|
| 325 |
def variable_names(self) -> List[str]:
|
| 326 |
return ["Stack", "Head tube length textfield", "Head tube lower extension2", "Head angle",
|
| 327 |
"DT Length", "dtd", "htd"]
|
|
|
|
| 347 |
|
| 348 |
|
| 349 |
class TopTubeImproperlyJoinsHeadTube(ValidationFunction):
|
| 350 |
+
def friendly_name(self) -> str: return "Top Tube Improperly Joins Head Tube"
|
| 351 |
def variable_names(self) -> List[str]:
|
| 352 |
return ["Stack", "Head tube length textfield", "Head tube lower extension2", "Head tube upper extension2",
|
| 353 |
"Seat tube extension2", "Head angle", "Seat angle", "DT Length", "ttd", "htd","Seat tube length"]
|
|
|
|
| 376 |
|
| 377 |
|
| 378 |
class TopTubeImproperlyJoinsSeatTube(ValidationFunction):
|
| 379 |
+
def friendly_name(self) -> str: return "Top Tube Improperly Joins Seat Tube"
|
| 380 |
def variable_names(self) -> List[str]:
|
| 381 |
return ["Stack", "Head tube length textfield", "Head tube lower extension2", "Head tube upper extension2",
|
| 382 |
"Seat tube extension2", "Head angle", "Seat angle", "DT Length", "ttd", "std","Seat tube length"]
|
|
|
|
| 405 |
return L1 + L2 - stux + below_0_pen + above_pi_pen + seatpost_clamp_default_offset
|
| 406 |
|
| 407 |
|
| 408 |
+
class DownTubeCollidesWithFrontWheel(ValidationFunction):
|
| 409 |
+
def friendly_name(self) -> str: return "Down Tube Collides With Front Wheel"
|
| 410 |
def variable_names(self) -> List[str]:
|
| 411 |
return ["Stack", "Head tube length textfield", "Head tube lower extension2", "Head angle",
|
| 412 |
"DT Length", "BB textfield", "FORK0R", "Wheel diameter front", "Wheel diameter rear", "dtd"]
|
|
|
|
| 427 |
|
| 428 |
|
| 429 |
class SaddleHitsTopTube(ValidationFunction):
|
| 430 |
+
def friendly_name(self) -> str: return "Saddle Hits Top Tube"
|
| 431 |
def variable_names(self) -> List[str]:
|
| 432 |
return ["Stack", "Head tube length textfield", "Head tube lower extension2", "Head tube upper extension2",
|
| 433 |
"Seat tube extension2", "Head angle", "Seat angle", "DT Length", "ttd", "std",
|
|
|
|
| 465 |
|
| 466 |
|
| 467 |
class SaddleHitsHeadTube(ValidationFunction):
|
| 468 |
+
def friendly_name(self) -> str: return "Saddle Hits Head Tube"
|
| 469 |
def variable_names(self) -> List[str]:
|
| 470 |
return ["Stack", "Head tube length textfield", "Head tube lower extension2", "Head tube upper extension2",
|
| 471 |
"Seat tube extension2", "Head angle", "Seat angle", "DT Length", "ttd", "htd",
|
|
|
|
| 519 |
ChainStaySmallerThanRearWheelRadius(),
|
| 520 |
ChainStayShorterThanBBDrop(),
|
| 521 |
SeatStaySmallerThanRearWheelRadius(),
|
| 522 |
+
SeatTubeCollidesWithRearWheel(),
|
| 523 |
DownTubeCantReachHeadTube(),
|
| 524 |
RearWheelCutoutSeversSeatTube(),
|
| 525 |
+
FootCollidesWithFrontWheel(),
|
| 526 |
CrankHitsGroundInLowestPosition(),
|
| 527 |
+
RGBValueGreaterThan255(),
|
| 528 |
ChainStaysIntersect(),
|
| 529 |
TubeWallThicknessExceedsRadius(),
|
| 530 |
+
SeatTubeTooNarrowForSeatPost(),
|
| 531 |
DownTubeImproperlyJoinsHeadTube(),
|
| 532 |
TopTubeImproperlyJoinsHeadTube(),
|
| 533 |
TopTubeImproperlyJoinsSeatTube(),
|
| 534 |
+
DownTubeCollidesWithFrontWheel(),
|
| 535 |
SaddleHitsTopTube(),
|
| 536 |
SaddleHitsHeadTube(),
|
| 537 |
]
|
|
|
|
| 553 |
# ChainStaySmallerThanRearWheelRadius(),
|
| 554 |
# ChainStayShorterThanBBDrop(),
|
| 555 |
# SeatStaySmallerThanRearWheelRadius(),
|
| 556 |
+
SeatTubeCollidesWithRearWheel(),
|
| 557 |
# DownTubeCantReachHeadTube(),
|
| 558 |
# RearWheelCutoutSeversSeatTube(),
|
| 559 |
+
FootCollidesWithFrontWheel(),
|
| 560 |
# CrankHitsGroundInLowestPosition(),
|
| 561 |
+
# RGBValueGreaterThan255(),
|
| 562 |
# ChainStaysIntersect(),
|
| 563 |
# TubeWallThicknessExceedsRadius(),
|
| 564 |
+
SeatTubeTooNarrowForSeatPost(),
|
| 565 |
DownTubeImproperlyJoinsHeadTube(),
|
| 566 |
# TopTubeImproperlyJoinsHeadTube(),
|
| 567 |
TopTubeImproperlyJoinsSeatTube(),
|
| 568 |
+
# DownTubeCollidesWithFrontWheel(),
|
| 569 |
# SaddleHitsTopTube(),
|
| 570 |
# SaddleHitsHeadTube(),
|
| 571 |
]
|
bike_bench_internal/src/bikebench/xml_handling/bcad_to_bikebench.py
CHANGED
|
@@ -324,12 +324,9 @@ TYPE_SPEC = {
|
|
| 324 |
"FDBSD": "float",
|
| 325 |
"Fork type": "int",
|
| 326 |
"Stem kind": "int",
|
| 327 |
-
"Display AEROBARS": "bool",
|
| 328 |
"Handlebar style": "cat",
|
| 329 |
"BB length": "float",
|
| 330 |
"Wheel cut": "float",
|
| 331 |
-
"Front Fender include": "bool",
|
| 332 |
-
"Rear Fender include": "bool",
|
| 333 |
"BELTorCHAIN": "bool",
|
| 334 |
"Number of cogs": "int",
|
| 335 |
"Number of chainrings": "int",
|
|
@@ -560,6 +557,11 @@ def build_bikebench_dataframe(
|
|
| 560 |
result = converted[ordered_cols].copy()
|
| 561 |
result.index.name = None
|
| 562 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 563 |
# Enforce schema & impute
|
| 564 |
result = apply_type_schema(result)
|
| 565 |
|
|
@@ -595,6 +597,29 @@ def build_bikebench_dataframe(
|
|
| 595 |
|
| 596 |
return result
|
| 597 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 598 |
THICKNESS_COLS = [
|
| 599 |
"Wall thickness Bottom Bracket",
|
| 600 |
"Wall thickness Top tube",
|
|
|
|
| 324 |
"FDBSD": "float",
|
| 325 |
"Fork type": "int",
|
| 326 |
"Stem kind": "int",
|
|
|
|
| 327 |
"Handlebar style": "cat",
|
| 328 |
"BB length": "float",
|
| 329 |
"Wheel cut": "float",
|
|
|
|
|
|
|
| 330 |
"BELTorCHAIN": "bool",
|
| 331 |
"Number of cogs": "int",
|
| 332 |
"Number of chainrings": "int",
|
|
|
|
| 557 |
result = converted[ordered_cols].copy()
|
| 558 |
result.index.name = None
|
| 559 |
|
| 560 |
+
result["MATERIAL"] = result["MATERIAL"].map(_material_to_3class)
|
| 561 |
+
|
| 562 |
+
# Enforce schema & impute
|
| 563 |
+
result = apply_type_schema(result)
|
| 564 |
+
|
| 565 |
# Enforce schema & impute
|
| 566 |
result = apply_type_schema(result)
|
| 567 |
|
|
|
|
| 597 |
|
| 598 |
return result
|
| 599 |
|
| 600 |
+
def _material_to_3class(val: object) -> str:
|
| 601 |
+
"""Map raw MATERIAL values to three classes: ALUMINIUM, STEEL, BAMBOO."""
|
| 602 |
+
if val is None or (isinstance(val, float) and pd.isna(val)):
|
| 603 |
+
return "ALUMINIUM" # treat missing like OTHER -> ALUMINIUM
|
| 604 |
+
|
| 605 |
+
s = str(val).strip().upper()
|
| 606 |
+
# normalize a bit
|
| 607 |
+
s_norm = re.sub(r"[^A-Z]", "", s) # remove spaces, dashes, etc.
|
| 608 |
+
|
| 609 |
+
# direct keep
|
| 610 |
+
if s_norm == "TITANIUM":
|
| 611 |
+
return "TITANIUM"
|
| 612 |
+
if s_norm == "STEEL":
|
| 613 |
+
return "STEEL"
|
| 614 |
+
|
| 615 |
+
# map CARBON (and a couple common aliases) to STEEL
|
| 616 |
+
if s_norm == "CARBON":
|
| 617 |
+
return "STEEL"
|
| 618 |
+
|
| 619 |
+
# everything else (OTHER, ALUMINIUM, ALLOY, unknowns...) → ALUMINIUM
|
| 620 |
+
return "ALUMINIUM"
|
| 621 |
+
|
| 622 |
+
|
| 623 |
THICKNESS_COLS = [
|
| 624 |
"Wall thickness Bottom Bracket",
|
| 625 |
"Wall thickness Top tube",
|
bike_bench_internal/src/resources/misc/ref_point.csv
CHANGED
|
@@ -1,50 +1,50 @@
|
|
| 1 |
-
Usability Score,
|
| 2 |
-
Drag Force (N),
|
| 3 |
-
Knee Angle Error (deg.),
|
| 4 |
-
Hip Angle Error (deg.),
|
| 5 |
-
Arm Angle Error (deg.),
|
| 6 |
-
Arm Too Long for Bike,-0.
|
| 7 |
-
Saddle Too Far From Handle,-0.
|
| 8 |
-
Torso Too Long for Bike,-0.
|
| 9 |
-
Saddle Too Far From Crank,0.
|
| 10 |
-
Upper Leg Too Long for Bike,-0.
|
| 11 |
-
Lower Leg Too Long for Bike,-0.
|
| 12 |
-
Cosine Distance
|
| 13 |
-
Mass (kg),
|
| 14 |
-
Planar Compliance Score,9.
|
| 15 |
-
Transverse Compliance Score,8.
|
| 16 |
-
Eccentric Compliance Score,8.
|
| 17 |
-
Planar Safety Factor,1.
|
| 18 |
-
Eccentric Safety Factor,1.
|
| 19 |
-
Predicted Frame Validity,0.
|
| 20 |
-
Saddle
|
| 21 |
-
Saddle
|
| 22 |
-
Saddle
|
| 23 |
-
Head
|
| 24 |
-
Seat
|
| 25 |
-
Seat
|
| 26 |
-
Seat
|
| 27 |
-
Rear Wheel
|
| 28 |
-
Front Wheel
|
| 29 |
-
Seat
|
| 30 |
-
Head
|
| 31 |
-
Seat
|
| 32 |
-
Non-negative
|
| 33 |
-
Chain
|
| 34 |
-
Chain
|
| 35 |
-
Seat
|
| 36 |
-
Seat Tube
|
| 37 |
-
Down
|
| 38 |
-
Rear
|
| 39 |
-
Foot
|
| 40 |
-
Crank
|
| 41 |
-
RGB
|
| 42 |
-
Chain
|
| 43 |
-
Tube
|
| 44 |
-
Seat
|
| 45 |
-
Down
|
| 46 |
-
Top
|
| 47 |
-
Top
|
| 48 |
-
Down
|
| 49 |
-
Saddle
|
| 50 |
-
Saddle
|
|
|
|
| 1 |
+
Usability Score,1.0059241
|
| 2 |
+
Drag Force (N),27.861992
|
| 3 |
+
Knee Angle Error (deg.),127.78383
|
| 4 |
+
Hip Angle Error (deg.),47.41717
|
| 5 |
+
Arm Angle Error (deg.),54.18302
|
| 6 |
+
Arm Too Long for Bike,-0.21971205
|
| 7 |
+
Saddle Too Far From Handle,-0.056464136
|
| 8 |
+
Torso Too Long for Bike,-0.366885
|
| 9 |
+
Saddle Too Far From Crank,0.22086428
|
| 10 |
+
Upper Leg Too Long for Bike,-0.5684242
|
| 11 |
+
Lower Leg Too Long for Bike,-0.15311062
|
| 12 |
+
Cosine Distance To Embedding,0.39972186
|
| 13 |
+
Mass (kg),14.34326
|
| 14 |
+
Planar Compliance Score,9.962891
|
| 15 |
+
Transverse Compliance Score,8.808648
|
| 16 |
+
Eccentric Compliance Score,8.635697
|
| 17 |
+
Planar Safety Factor,1.2305812
|
| 18 |
+
Eccentric Safety Factor,1.1785439
|
| 19 |
+
Predicted Frame Validity,0.55
|
| 20 |
+
Saddle Height Too Small,-97.435
|
| 21 |
+
Saddle Collides With Seat Tube,83.23999
|
| 22 |
+
Saddle Too Short,115.5
|
| 23 |
+
Head Angle Over Limit,-95.1
|
| 24 |
+
Seat Angle Over Limit,-87.7
|
| 25 |
+
Seat Post Too Short,257.977
|
| 26 |
+
Seat Post Too Long,79.27089
|
| 27 |
+
Rear Wheel Inner Diameter Too Small,92.2
|
| 28 |
+
Front Wheel Inner Diameter Too Small,92.2
|
| 29 |
+
Seat Tube Extension Longer Than Seat Tube,-51.0
|
| 30 |
+
Head Tube Upper Extension And Lower Extension Overlap,85.07499
|
| 31 |
+
Seat Stay Junction Longer Than Seat Tube,-53.565
|
| 32 |
+
Non-negative Parameter Is Negative,-4571.084
|
| 33 |
+
Chain Stay Smaller Than Rear Wheel Radius,71.325
|
| 34 |
+
Chain Stay Shorter Than BB Drop,-196.775
|
| 35 |
+
Seat Stay Smaller Than Rear Wheel Radius,26.516027
|
| 36 |
+
Seat Tube Collides With Rear Wheel,123.08644
|
| 37 |
+
Down Tube Can't Reach Head Tube,-65.34191
|
| 38 |
+
Rear Wheel Cutout Severs Seat Tube,49999972.0
|
| 39 |
+
Foot Collides With Front Wheel,60363.273
|
| 40 |
+
Crank Hits Ground In Lowest Position,44.55
|
| 41 |
+
RGB Value Greater Than 255,38.25
|
| 42 |
+
Chain Stays Intersect,40.745003
|
| 43 |
+
Tube Wall Thickness Exceeds Radius,3.4379506
|
| 44 |
+
Seat Tube Too Narrow For Seat Post,32.42751
|
| 45 |
+
Down Tube Improperly Joins Head Tube,62.309597
|
| 46 |
+
Top Tube Improperly Joins Head Tube,35.511604
|
| 47 |
+
Top Tube Improperly Joins Seat Tube,42.88616
|
| 48 |
+
Down Tube Collides With Front Wheel,47.536987
|
| 49 |
+
Saddle Hits Top Tube,0.4291829
|
| 50 |
+
Saddle Hits Head Tube,0.037365556
|
bike_bench_internal/src/resources/models_and_scalers/aesthetics_model_weights.pt
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:79d5b3766259ab7b134eb94f1ba5632f1269c2ac23ca9b34ebe7ec387516df12
|
| 3 |
+
size 2205371
|
bike_bench_internal/src/resources/models_and_scalers/aesthetics_scaler.pt
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:fb3a5edc888be3f7ec468c1a852c2fce98b60d8ac90cb5f7c71ad308c342010a
|
| 3 |
+
size 3061
|