Spaces:
Runtime error
Runtime error
import os | |
import torch | |
import gradio as gr | |
import time | |
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, pipeline | |
model = AutoModelForSeq2SeqLM.from_pretrained("facebook/nllb-200-distilled-1.3B") | |
tokenizer = AutoTokenizer.from_pretrained("facebook/nllb-200-distilled-1.3B") | |
def translation(source, target, text) -> str: | |
translator = pipeline('translation', model=model, tokenizer=tokenizer, src_lang=source, tgt_lang=target) | |
output = translator(text, max_length=400) | |
end_time = time.time() | |
output = output[0]['translation_text'] | |
return output | |
if __name__ == '__main__': | |
# define gradio demo | |
lang_codes = ["eng_Latn", "fuv_Latn", "fra_Latn", "arb_Arab"] | |
#inputs = [gr.inputs.Radio(['nllb-distilled-600M', 'nllb-1.3B', 'nllb-distilled-1.3B'], label='NLLB Model'), | |
inputs = [gr.inputs.Dropdown(lang_codes, default='fra_Latn', label='Source'), | |
gr.inputs.Dropdown(lang_codes, default='fuv_Latn', label='Target'), | |
gr.inputs.Textbox(lines=5, label="Input text"), | |
] | |
title = "Fulfulde translator" | |
demo_status = "Demo is running on CPU" | |
description = "Fulfulde to French, English or Arabic and vice-versa translation demo using NLLB." | |
examples = [ | |
['fra_Latn', 'fuv_Latn', 'La traduction est une tâche facile.'] | |
] | |
gr.Interface( | |
translation, | |
inputs, | |
["text"], | |
examples=examples, | |
cache_examples=False, | |
title=title, | |
description=description | |
).launch() | |