yasserrmd commited on
Commit
b5b4791
·
verified ·
1 Parent(s): 7efeba9

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +18 -5
app.py CHANGED
@@ -4,6 +4,9 @@ from transformers import pipeline
4
  import gradio as gr
5
  import spaces
6
 
 
 
 
7
  # Load the model and LoRA weights
8
  pipe = FluxPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", torch_dtype=torch.bfloat16)
9
  pipe.load_lora_weights("Shakker-Labs/FLUX.1-dev-LoRA-Children-Simple-Sketch", weight_name="FLUX-dev-lora-children-simple-sketch.safetensors")
@@ -11,12 +14,22 @@ pipe.fuse_lora(lora_scale=1.5)
11
  pipe.to("cuda")
12
 
13
  # Load the NSFW classifier
14
- classifier = pipeline("image-classification", model="Falconsai/nsfw_image_detection",device=torch.device('cuda'))
 
 
15
  NSFW_THRESHOLD = 0.5
16
 
17
  # Define the function to generate the sketch
18
  @spaces.GPU
19
  def generate_sketch(prompt, num_inference_steps, guidance_scale):
 
 
 
 
 
 
 
 
20
  image = pipe("sketched style, " + prompt,
21
  num_inference_steps=num_inference_steps,
22
  guidance_scale=guidance_scale,
@@ -24,12 +37,12 @@ def generate_sketch(prompt, num_inference_steps, guidance_scale):
24
 
25
 
26
  # Classify the image for NSFW content
27
- classification = classifier(image)
28
 
29
- print(classification)
30
 
31
  # Check the classification results
32
- for result in classification:
33
  if result['label'] == 'nsfw' and result['score'] > NSFW_THRESHOLD:
34
  return "Inappropriate content detected. Please try another prompt."
35
 
@@ -46,7 +59,7 @@ interface = gr.Interface(
46
  gr.Slider(5, 50, value=24, step=1, label="Number of Inference Steps"), # Slider for num_inference_steps
47
  gr.Slider(1.0, 10.0, value=3.5, step=0.1, label="Guidance Scale") # Slider for guidance_scale
48
  ],
49
- outputs="image",
50
  title="Kids Sketch Generator",
51
  description="Enter a text prompt and generate a fun sketch for kids with customizable inference steps and guidance scale."
52
  )
 
4
  import gradio as gr
5
  import spaces
6
 
7
+
8
+ device=torch.device('cuda')
9
+
10
  # Load the model and LoRA weights
11
  pipe = FluxPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", torch_dtype=torch.bfloat16)
12
  pipe.load_lora_weights("Shakker-Labs/FLUX.1-dev-LoRA-Children-Simple-Sketch", weight_name="FLUX-dev-lora-children-simple-sketch.safetensors")
 
14
  pipe.to("cuda")
15
 
16
  # Load the NSFW classifier
17
+ image_classifier = pipeline("image-classification", model="Falconsai/nsfw_image_detection",device=device)
18
+ text_classifier = pipeline("sentiment-analysis", model="michellejieli/NSFW_text_classification",device=device)
19
+ classifier("I see you’ve set aside this special time to humiliate yourself in public.")
20
  NSFW_THRESHOLD = 0.5
21
 
22
  # Define the function to generate the sketch
23
  @spaces.GPU
24
  def generate_sketch(prompt, num_inference_steps, guidance_scale):
25
+ # Classify the text for NSFW content
26
+ text_classification = text_classifier(prompt)
27
+
28
+ # Check the classification results
29
+ for result in text_classification:
30
+ if result['label'] == 'nsfw' and result['score'] > NSFW_THRESHOLD:
31
+ return "Inappropriate prompt detected. Please try another prompt."
32
+
33
  image = pipe("sketched style, " + prompt,
34
  num_inference_steps=num_inference_steps,
35
  guidance_scale=guidance_scale,
 
37
 
38
 
39
  # Classify the image for NSFW content
40
+ image_classification = image_classifier(image)
41
 
42
+ print(image_classification)
43
 
44
  # Check the classification results
45
+ for result in image_classification:
46
  if result['label'] == 'nsfw' and result['score'] > NSFW_THRESHOLD:
47
  return "Inappropriate content detected. Please try another prompt."
48
 
 
59
  gr.Slider(5, 50, value=24, step=1, label="Number of Inference Steps"), # Slider for num_inference_steps
60
  gr.Slider(1.0, 10.0, value=3.5, step=0.1, label="Guidance Scale") # Slider for guidance_scale
61
  ],
62
+ outputs="auto",
63
  title="Kids Sketch Generator",
64
  description="Enter a text prompt and generate a fun sketch for kids with customizable inference steps and guidance scale."
65
  )