Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -5,6 +5,7 @@ from fastapi.staticfiles import StaticFiles
|
|
5 |
from pydantic import BaseModel
|
6 |
from huggingface_hub import InferenceClient
|
7 |
import re
|
|
|
8 |
|
9 |
# Initialize FastAPI app
|
10 |
app = FastAPI()
|
@@ -13,13 +14,16 @@ app = FastAPI()
|
|
13 |
app.mount("/static", StaticFiles(directory="static"), name="static")
|
14 |
|
15 |
# Initialize Hugging Face Inference Client
|
16 |
-
client = InferenceClient()
|
|
|
|
|
17 |
|
18 |
# Pydantic model for API input
|
19 |
class InfographicRequest(BaseModel):
|
20 |
description: str
|
21 |
|
22 |
# Load prompt template from environment variable
|
|
|
23 |
PROMPT_TEMPLATE = os.getenv("PROMPT_TEMPLATE")
|
24 |
|
25 |
|
@@ -41,6 +45,24 @@ async def extract_code_blocks(markdown_text):
|
|
41 |
|
42 |
return code_blocks
|
43 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
44 |
# Route to serve the HTML template
|
45 |
@app.get("/", response_class=HTMLResponse)
|
46 |
async def serve_frontend():
|
@@ -53,23 +75,24 @@ async def generate_infographic(request: InfographicRequest):
|
|
53 |
prompt = PROMPT_TEMPLATE.format(description=description)
|
54 |
|
55 |
try:
|
56 |
-
messages = [{"role": "user", "content": prompt}]
|
57 |
-
stream = client.chat.completions.create(
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
)
|
65 |
|
66 |
|
67 |
-
generated_text = ""
|
68 |
-
for chunk in stream:
|
69 |
-
|
70 |
|
71 |
-
print(generated_text)
|
72 |
-
code_blocks= await extract_code_blocks(generated_text)
|
|
|
73 |
if code_blocks:
|
74 |
return JSONResponse(content={"html": code_blocks[0]})
|
75 |
else:
|
|
|
5 |
from pydantic import BaseModel
|
6 |
from huggingface_hub import InferenceClient
|
7 |
import re
|
8 |
+
from groq import Groq
|
9 |
|
10 |
# Initialize FastAPI app
|
11 |
app = FastAPI()
|
|
|
14 |
app.mount("/static", StaticFiles(directory="static"), name="static")
|
15 |
|
16 |
# Initialize Hugging Face Inference Client
|
17 |
+
#client = InferenceClient()
|
18 |
+
|
19 |
+
client = Groq()
|
20 |
|
21 |
# Pydantic model for API input
|
22 |
class InfographicRequest(BaseModel):
|
23 |
description: str
|
24 |
|
25 |
# Load prompt template from environment variable
|
26 |
+
SYSTEM_INSTRUCT = = os.getenv("SYSTEM_INSTRUCTOR")
|
27 |
PROMPT_TEMPLATE = os.getenv("PROMPT_TEMPLATE")
|
28 |
|
29 |
|
|
|
45 |
|
46 |
return code_blocks
|
47 |
|
48 |
+
async def generate_infographic(infoRequest):
|
49 |
+
prompt = PROMPT_TEMPLATE.format(description=description)
|
50 |
+
generated_completion = client.chat.completions.create(
|
51 |
+
model="llama-3.1-70b-versatile",
|
52 |
+
messages=[
|
53 |
+
{"role": "system", "content": SYSTEM_INSTRUCT},
|
54 |
+
{"role": "user", "content": prompt}
|
55 |
+
],
|
56 |
+
temperature=0.5,
|
57 |
+
max_tokens=5000,
|
58 |
+
top_p=1,
|
59 |
+
stream=False,
|
60 |
+
stop=None
|
61 |
+
)
|
62 |
+
generated_text = generated_completion.choices[0].message.content
|
63 |
+
code_blocks= await extract_code_blocks(generated_text)
|
64 |
+
return code_blocks
|
65 |
+
|
66 |
# Route to serve the HTML template
|
67 |
@app.get("/", response_class=HTMLResponse)
|
68 |
async def serve_frontend():
|
|
|
75 |
prompt = PROMPT_TEMPLATE.format(description=description)
|
76 |
|
77 |
try:
|
78 |
+
# messages = [{"role": "user", "content": prompt}]
|
79 |
+
# stream = client.chat.completions.create(
|
80 |
+
# model="Qwen/Qwen2.5-Coder-32B-Instruct",
|
81 |
+
# messages=messages,
|
82 |
+
# temperature=0.4,
|
83 |
+
# max_tokens=6000,
|
84 |
+
# top_p=0.7,
|
85 |
+
# stream=True,
|
86 |
+
# )
|
87 |
|
88 |
|
89 |
+
# generated_text = ""
|
90 |
+
# for chunk in stream:
|
91 |
+
# generated_text += chunk.choices[0].delta.content
|
92 |
|
93 |
+
# print(generated_text)
|
94 |
+
#code_blocks= await extract_code_blocks(generated_text)
|
95 |
+
code_blocks=generate_infographic(description)
|
96 |
if code_blocks:
|
97 |
return JSONResponse(content={"html": code_blocks[0]})
|
98 |
else:
|