Spaces:
				
			
			
	
			
			
		Sleeping
		
	
	
	
			
			
	
	
	
	
		
		
		Sleeping
		
	Upload modeling_diffusion.py
Browse files- modeling_diffusion.py +36 -0
 
    	
        modeling_diffusion.py
    ADDED
    
    | 
         @@ -0,0 +1,36 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            import torch
         
     | 
| 2 | 
         
            +
            import torch.nn as nn
         
     | 
| 3 | 
         
            +
            from huggingface_hub import PyTorchModelHubMixin
         
     | 
| 4 | 
         
            +
             
     | 
| 5 | 
         
            +
            class DiffusionTextModel(nn.Module, PyTorchModelHubMixin):
         
     | 
| 6 | 
         
            +
                def __init__(self, vocab_size, max_seq_len, max_time_steps,
         
     | 
| 7 | 
         
            +
                             embed_dim=128, n_layers=4, n_heads=4):
         
     | 
| 8 | 
         
            +
                    super().__init__()
         
     | 
| 9 | 
         
            +
                    self.config = {
         
     | 
| 10 | 
         
            +
                        "vocab_size": vocab_size,
         
     | 
| 11 | 
         
            +
                        "max_seq_len": max_seq_len,
         
     | 
| 12 | 
         
            +
                        "max_time_steps": max_time_steps,
         
     | 
| 13 | 
         
            +
                        "embed_dim": embed_dim,
         
     | 
| 14 | 
         
            +
                        "n_layers": n_layers,
         
     | 
| 15 | 
         
            +
                        "n_heads": n_heads
         
     | 
| 16 | 
         
            +
                    }
         
     | 
| 17 | 
         
            +
             
     | 
| 18 | 
         
            +
                    self.token_emb = nn.Embedding(vocab_size, embed_dim)
         
     | 
| 19 | 
         
            +
                    self.pos_emb   = nn.Embedding(max_seq_len, embed_dim)
         
     | 
| 20 | 
         
            +
                    self.time_emb  = nn.Embedding(max_time_steps+1, embed_dim)
         
     | 
| 21 | 
         
            +
             
     | 
| 22 | 
         
            +
                    enc_layer = nn.TransformerEncoderLayer(
         
     | 
| 23 | 
         
            +
                        d_model=embed_dim, nhead=n_heads,
         
     | 
| 24 | 
         
            +
                        dim_feedforward=4*embed_dim, activation="gelu"
         
     | 
| 25 | 
         
            +
                    )
         
     | 
| 26 | 
         
            +
                    self.transformer = nn.TransformerEncoder(enc_layer, num_layers=n_layers)
         
     | 
| 27 | 
         
            +
                    self.out = nn.Linear(embed_dim, vocab_size)
         
     | 
| 28 | 
         
            +
             
     | 
| 29 | 
         
            +
                def forward(self, x, t):
         
     | 
| 30 | 
         
            +
                    B, L = x.shape
         
     | 
| 31 | 
         
            +
                    tok = self.token_emb(x)
         
     | 
| 32 | 
         
            +
                    pos = self.pos_emb(torch.arange(L, device=x.device).unsqueeze(0).expand(B, L))
         
     | 
| 33 | 
         
            +
                    tim = self.time_emb(t).unsqueeze(1).expand(B, L, -1)
         
     | 
| 34 | 
         
            +
                    h = tok + pos + tim
         
     | 
| 35 | 
         
            +
                    h = self.transformer(h.transpose(0,1)).transpose(0,1)
         
     | 
| 36 | 
         
            +
                    return self.out(h)
         
     |