mmir_usersim / captioning /models /ShowTellModel.py
yashonwu
add captioning
9bf9e42
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.autograd import *
from . import utils
from .CaptionModel import CaptionModel
bad_endings = ['a','an','the','in','for','at','of','with','before','after','on','upon','near','to','is','are','am']
bad_endings += ['UNK', 'has', 'and', 'more']
# torch.manual_seed(42)
# if torch.cuda.is_available():
# torch.cuda.manual_seed(42)
class ShowTellModel(CaptionModel):
def __init__(self, opt):
super(ShowTellModel, self).__init__()
self.vocab_size = opt.vocab_size
self.input_encoding_size = opt.input_encoding_size
self.rnn_type = opt.rnn_type
self.rnn_size = opt.rnn_size
self.num_layers = opt.num_layers
self.drop_prob_lm = opt.drop_prob_lm
self.seq_length = opt.seq_length
self.fc_feat_size = opt.fc_feat_size
self.eos_idx = getattr(opt, 'eos_idx', 0)
self.pad_idx = getattr(opt, 'pad_idx', 0)
self.ss_prob = 0.0 # Schedule sampling probability
self.img_embed = nn.Linear(self.fc_feat_size, self.input_encoding_size)
self.core = getattr(nn, self.rnn_type.upper())(self.input_encoding_size, self.rnn_size, self.num_layers, bias=False, dropout=self.drop_prob_lm)
self.embed = nn.Embedding(self.vocab_size + 1, self.input_encoding_size)
self.logit = nn.Linear(self.rnn_size, self.vocab_size + 1)
self.dropout = nn.Dropout(self.drop_prob_lm)
# For remove bad endding
self.vocab = opt.vocab
self.bad_endings_ix = [int(k) for k,v in self.vocab.items() if v in bad_endings]
self.init_weights()
def init_weights(self):
initrange = 0.1
self.embed.weight.data.uniform_(-initrange, initrange)
self.logit.bias.data.fill_(0)
self.logit.weight.data.uniform_(-initrange, initrange)
def init_hidden(self, bsz):
weight = self.logit.weight
if self.rnn_type == 'lstm':
return (weight.new_zeros(self.num_layers, bsz, self.rnn_size),
weight.new_zeros(self.num_layers, bsz, self.rnn_size))
else:
return weight.new_zeros(self.num_layers, bsz, self.rnn_size)
def _forward(self, fc_feats, att_feats, seq, att_masks=None):
batch_size = fc_feats.size(0)
if seq.ndim == 3: # B * seq_per_img * seq_len
seq = seq.reshape(-1, seq.shape[2])
seq_per_img = seq.shape[0] // batch_size
state = self.init_hidden(batch_size*seq_per_img)
outputs = []
if seq_per_img > 1:
fc_feats = utils.repeat_tensors(seq_per_img, fc_feats)
for i in range(seq.size(1)+1):
if i == 0:
xt = self.img_embed(fc_feats)
else:
if self.training and i >= 2 and self.ss_prob > 0.0: # otherwiste no need to sample
sample_prob = fc_feats.data.new(batch_size*seq_per_img).uniform_(0, 1)
sample_mask = sample_prob < self.ss_prob
if sample_mask.sum() == 0:
it = seq[:, i-1].clone()
else:
sample_ind = sample_mask.nonzero().view(-1)
it = seq[:, i-1].data.clone()
#prob_prev = torch.exp(outputs[-1].data.index_select(0, sample_ind)) # fetch prev distribution: shape Nx(M+1)
#it.index_copy_(0, sample_ind, torch.multinomial(prob_prev, 1).view(-1))
prob_prev = torch.exp(outputs[-1].data) # fetch prev distribution: shape Nx(M+1)
it.index_copy_(0, sample_ind, torch.multinomial(prob_prev, 1).view(-1).index_select(0, sample_ind))
else:
it = seq[:, i-1].clone()
# break if all the sequences end
if i >= 2 and seq[:, i-1].data.sum() == 0:
break
xt = self.embed(it)
output, state = self.core(xt.unsqueeze(0), state)
output = F.log_softmax(self.logit(self.dropout(output.squeeze(0))), dim=1)
outputs.append(output)
return torch.cat([_.unsqueeze(1) for _ in outputs[1:]], 1).contiguous()
def get_logprobs_state(self, it, state):
# 'it' contains a word index
xt = self.embed(it)
output, state = self.core(xt.unsqueeze(0), state)
logprobs = F.log_softmax(self.logit(self.dropout(output.squeeze(0))), dim=1)
return logprobs, state
def _sample_beam(self, fc_feats, att_feats, att_masks=None, opt={}):
# beam_size = opt.get('beam_size', 10)
# batch_size = fc_feats.size(0)
# assert beam_size <= self.vocab_size + 1, 'lets assume this for now, otherwise this corner case causes a few headaches down the road. can be dealt with in future if needed'
# seq = torch.LongTensor(self.seq_length, batch_size).zero_()
# seqLogprobs = torch.FloatTensor(self.seq_length, batch_size)
# # lets process every image independently for now, for simplicity
beam_size = opt.get('beam_size', 10)
group_size = opt.get('group_size', 1)
sample_n = opt.get('sample_n', 10)
# when sample_n == beam_size then each beam is a sample.
assert sample_n == 1 or sample_n == beam_size // group_size, 'when beam search, sample_n == 1 or beam search'
batch_size = fc_feats.size(0)
assert beam_size <= self.vocab_size + 1, 'lets assume this for now, otherwise this corner case causes a few headaches down the road. can be dealt with in future if needed'
seq = fc_feats.new_full((batch_size*sample_n, self.seq_length), self.pad_idx, dtype=torch.long)
seqLogprobs = fc_feats.new_zeros(batch_size*sample_n, self.seq_length, self.vocab_size + 1)
self.done_beams = [[] for _ in range(batch_size)]
for k in range(batch_size):
state = self.init_hidden(beam_size)
for t in range(2):
if t == 0:
xt = self.img_embed(fc_feats[k:k+1]).expand(beam_size, self.input_encoding_size)
elif t == 1: # input <bos>
it = fc_feats.data.new(beam_size).long().zero_()
xt = self.embed(it)
output, state = self.core(xt.unsqueeze(0), state)
logprobs = F.log_softmax(self.logit(self.dropout(output.squeeze(0))), dim=1)
self.done_beams[k] = self.old_beam_search(state, logprobs, opt=opt)
if sample_n == beam_size:
for _n in range(sample_n):
seq[k*sample_n+_n, :] = self.done_beams[k][_n]['seq']
seqLogprobs[k*sample_n+_n, :] = self.done_beams[k][_n]['logps']
else:
seq[k, :] = self.done_beams[k][0]['seq'] # the first beam has highest cumulative score
seqLogprobs[k, :] = self.done_beams[k][0]['logps']
# return the samples and their log likelihoods
return seq, seqLogprobs
# seq[:, k] = self.done_beams[k][0]['seq'] # the first beam has highest cumulative score
# seqLogprobs[:, k] = self.done_beams[k][0]['logps']
# # return the samples and their log likelihoods
# return seq.transpose(0, 1), seqLogprobs.transpose(0, 1)
def _new_sample_beam(self, fc_feats, att_feats, att_masks=None, opt={}):
beam_size = opt.get('beam_size', 10)
group_size = opt.get('group_size', 1)
sample_n = opt.get('sample_n', 10)
# when sample_n == beam_size then each beam is a sample.
assert sample_n == 1 or sample_n == beam_size // group_size, 'when beam search, sample_n == 1 or beam search'
batch_size = fc_feats.size(0)
assert beam_size <= self.vocab_size + 1, 'lets assume this for now, otherwise this corner case causes a few headaches down the road. can be dealt with in future if needed'
seq = fc_feats.new_full((batch_size*sample_n, self.seq_length), self.pad_idx, dtype=torch.long)
seqLogprobs = fc_feats.new_zeros(batch_size*sample_n, self.seq_length, self.vocab_size + 1)
self.done_beams = [[] for _ in range(batch_size)]
state = self.init_hidden(batch_size)
it = fc_feats.data.new(batch_size).long().zero_()
xt = self.embed(it)
output, state = self.core(xt.unsqueeze(0), state)
logprobs = F.log_softmax(self.logit(self.dropout(output.squeeze(0))), dim=1)
self.done_beams = self.beam_search(state, logprobs, opt=opt)
for k in range(batch_size):
if sample_n == beam_size:
for _n in range(sample_n):
seq_len = self.done_beams[k][_n]['seq'].shape[0]
seq[k*sample_n+_n, :seq_len] = self.done_beams[k][_n]['seq']
seqLogprobs[k*sample_n+_n, :seq_len] = self.done_beams[k][_n]['logps']
else:
seq_len = self.done_beams[k][0]['seq'].shape[0]
seq[k, :seq_len] = self.done_beams[k][0]['seq'] # the first beam has highest cumulative score
seqLogprobs[k, :seq_len] = self.done_beams[k][0]['logps']
# return the samples and their log likelihoods
return seq, seqLogprobs
def _old_sample(self, fc_feats, att_feats, att_masks=None, opt={}):
sample_method = opt.get('sample_method', 'greedy')
beam_size = opt.get('beam_size', 1)
temperature = opt.get('temperature', 1.0)
if beam_size > 1 and sample_method in ['greedy', 'beam_search']:
return self._sample_beam(fc_feats, att_feats, opt)
batch_size = fc_feats.size(0)
state = self.init_hidden(batch_size)
seq = fc_feats.new_zeros(batch_size, self.seq_length, dtype=torch.long)
seqLogprobs = fc_feats.new_zeros(batch_size, self.seq_length)
for t in range(self.seq_length + 2):
if t == 0:
xt = self.img_embed(fc_feats)
else:
if t == 1: # input <bos>
it = fc_feats.data.new(batch_size).long().zero_()
xt = self.embed(it)
output, state = self.core(xt.unsqueeze(0), state)
logprobs = F.log_softmax(self.logit(self.dropout(output.squeeze(0))), dim=1)
# sample the next word
if t == self.seq_length + 1: # skip if we achieve maximum length
break
if sample_method == 'greedy':
sampleLogprobs, it = torch.max(logprobs.data, 1)
it = it.view(-1).long()
else:
if temperature == 1.0:
prob_prev = torch.exp(logprobs.data).cpu() # fetch prev distribution: shape Nx(M+1)
else:
# scale logprobs by temperature
prob_prev = torch.exp(torch.div(logprobs.data, temperature)).cpu()
it = torch.multinomial(prob_prev, 1).to(logprobs.device)
sampleLogprobs = logprobs.gather(1, it) # gather the logprobs at sampled positions
it = it.view(-1).long() # and flatten indices for downstream processing
if t >= 1:
# stop when all finished
if t == 1:
unfinished = it > 0
else:
unfinished = unfinished & (it > 0)
it = it * unfinished.type_as(it)
seq[:,t-1] = it #seq[t] the input of t+2 time step
seqLogprobs[:,t-1] = sampleLogprobs.view(-1)
if unfinished.sum() == 0:
break
return seq, seqLogprobs
# remove bad endings and UNK
def _sample(self, fc_feats, att_feats, att_masks=None, opt={}):
sample_method = opt.get('sample_method', 'greedy')
beam_size = opt.get('beam_size', 1)
temperature = opt.get('temperature', 1.0)
sample_n = int(opt.get('sample_n', 1))
sample_n = 1
group_size = opt.get('group_size', 1)
output_logsoftmax = opt.get('output_logsoftmax', 1)
decoding_constraint = opt.get('decoding_constraint', 0)
block_trigrams = opt.get('block_trigrams', 0)
remove_bad_endings = opt.get('remove_bad_endings', 1)
suppress_UNK = opt.get('suppress_UNK', 1)
if beam_size > 1 and sample_method in ['greedy', 'beam_search']:
return self._sample_beam(fc_feats, att_feats, opt=opt)
batch_size = fc_feats.size(0)
state = self.init_hidden(batch_size)
trigrams = [] # will be a list of batch_size dictionaries
# seq = fc_feats.new_zeros(batch_size, self.seq_length, dtype=torch.long)
# seqLogprobs = fc_feats.new_zeros(batch_size, self.seq_length)
seq = fc_feats.new_full((batch_size*sample_n, self.seq_length), self.pad_idx, dtype=torch.long)
seqLogprobs = fc_feats.new_zeros(batch_size*sample_n, self.seq_length, self.vocab_size + 1)
for t in range(self.seq_length + 1):
if t == 0:
xt = self.img_embed(fc_feats)
else:
if t == 1: # input <bos>
it = fc_feats.data.new(batch_size).long().zero_()
xt = self.embed(it)
output, state = self.core(xt.unsqueeze(0), state)
logprobs = F.log_softmax(self.logit(self.dropout(output.squeeze(0))), dim=1)
if decoding_constraint and t > 0:
tmp = logprobs.new_zeros(logprobs.size())
tmp.scatter_(1, seq[:,t-1].data.unsqueeze(1), float('-inf'))
logprobs = logprobs + tmp
# print('seq', seq)
# print('self.seq_length',self.seq_length)
# print('seq shape', seq.shape)
if remove_bad_endings and t > 0:
logprobs[torch.from_numpy(np.isin(seq[:,t-1].data.cpu().numpy(), self.bad_endings_ix)), 0] = float('-inf')
# suppress UNK tokens in the decoding
if suppress_UNK and hasattr(self, 'vocab') and self.vocab[str(logprobs.size(1)-1)] == 'UNK':
logprobs[:,logprobs.size(1)-1] = logprobs[:, logprobs.size(1)-1] - 1000
# if remove_bad_endings and t > 0:
# tmp = logprobs.new_zeros(logprobs.size())
# prev_bad = np.isin(seq[:,t-1].data.cpu().numpy(), self.bad_endings_ix)
# # Make it impossible to generate bad_endings
# tmp[torch.from_numpy(prev_bad.astype('uint8')), 0] = float('-inf')
# # tmp[torch.from_numpy(prev_bad.bool()), 0] = float('-inf')
# logprobs = logprobs + tmp
# Mess with trigrams
# Copy from https://github.com/lukemelas/image-paragraph-captioning
if block_trigrams and t >= 3:
# Store trigram generated at last step
prev_two_batch = seq[:,t-3:t-1]
for i in range(batch_size): # = seq.size(0)
prev_two = (prev_two_batch[i][0].item(), prev_two_batch[i][1].item())
current = seq[i][t-1]
if t == 3: # initialize
trigrams.append({prev_two: [current]}) # {LongTensor: list containing 1 int}
elif t > 3:
if prev_two in trigrams[i]: # add to list
trigrams[i][prev_two].append(current)
else: # create list
trigrams[i][prev_two] = [current]
# Block used trigrams at next step
prev_two_batch = seq[:,t-2:t]
mask = torch.zeros(logprobs.size(), requires_grad=False).to(logprobs.device) # batch_size x vocab_size
for i in range(batch_size):
prev_two = (prev_two_batch[i][0].item(), prev_two_batch[i][1].item())
if prev_two in trigrams[i]:
for j in trigrams[i][prev_two]:
mask[i,j] += 1
# Apply mask to log probs
#logprobs = logprobs - (mask * 1e9)
alpha = 2.0 # = 4
logprobs = logprobs + (mask * -0.693 * alpha) # ln(1/2) * alpha (alpha -> infty works best)
# sample the next word
if t == self.seq_length+1: # skip if we achieve maximum length
break
it, sampleLogprobs = self.sample_next_word(logprobs, sample_method, temperature)
# stop when all finished
if t == 0:
unfinished = it != self.eos_idx
else:
it[~unfinished] = self.pad_idx # This allows eos_idx not being overwritten to 0
logprobs = logprobs * unfinished.unsqueeze(1).to(logprobs)
unfinished = unfinished & (it != self.eos_idx)
# print('-------logprobs shape:',logprobs.shape)
# print('-------it shape:',it.shape)
seq[:,t-1] = it
seqLogprobs[:,t-1] = logprobs
# quit loop if all sequences have finished
if unfinished.sum() == 0:
break
# print('-------seqLogprobs shape:',seqLogprobs.shape)
# print('-------seq shape:',seq.shape)
return seq, seqLogprobs