Spaces:
Sleeping
Sleeping
yashkavaiya
commited on
Commit
•
4e0eaa3
1
Parent(s):
24ae2da
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,61 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import matplotlib.pyplot as plt
|
3 |
+
from sklearn import datasets
|
4 |
+
from sklearn.tree import DecisionTreeClassifier, plot_tree
|
5 |
+
from io import BytesIO
|
6 |
+
from PIL import Image
|
7 |
+
|
8 |
+
# Load available datasets
|
9 |
+
dataset_names = ["iris", "wine", "breast_cancer", "digits"]
|
10 |
+
datasets_dict = {
|
11 |
+
"iris": datasets.load_iris(),
|
12 |
+
"wine": datasets.load_wine(),
|
13 |
+
"breast_cancer": datasets.load_breast_cancer(),
|
14 |
+
"digits": datasets.load_digits(),
|
15 |
+
}
|
16 |
+
|
17 |
+
# Define the function to visualize the decision tree
|
18 |
+
def visualize_decision_tree(dataset_name, max_depth, min_samples_split, min_samples_leaf, max_features, criterion, splitter, max_leaf_nodes, random_state):
|
19 |
+
dataset = datasets_dict[dataset_name]
|
20 |
+
X, y = dataset.data, dataset.target
|
21 |
+
clf = DecisionTreeClassifier(max_depth=max_depth, min_samples_split=min_samples_split, min_samples_leaf=min_samples_leaf, max_features=max_features, criterion=criterion, splitter=splitter, max_leaf_nodes=max_leaf_nodes, random_state=random_state)
|
22 |
+
clf.fit(X, y)
|
23 |
+
fig, ax = plt.subplots(figsize=(10, 8))
|
24 |
+
plot_tree(clf, feature_names=dataset.feature_names, class_names=dataset.target_names, filled=True, ax=ax)
|
25 |
+
buf = BytesIO()
|
26 |
+
fig.savefig(buf, format='png')
|
27 |
+
buf.seek(0)
|
28 |
+
image_data = buf.getvalue()
|
29 |
+
image = Image.open(BytesIO(image_data))
|
30 |
+
return image
|
31 |
+
|
32 |
+
# Define the hyperparameters and their ranges
|
33 |
+
max_depth_range = [None, 2, 3, 4, 5, 6, 7, 8, 9, 10]
|
34 |
+
min_samples_split_range = [2, 3, 4, 5, 6, 7, 8, 9, 10]
|
35 |
+
min_samples_leaf_range = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
|
36 |
+
max_features_range = [None, 'sqrt', 'log2', 0.1, 0.2, 0.3, 0.4, 0.5]
|
37 |
+
criterion_range = ['gini', 'entropy']
|
38 |
+
splitter_range = ['best', 'random']
|
39 |
+
max_leaf_nodes_range = [None, 2, 3, 4, 5, 6, 7, 8, 9, 10]
|
40 |
+
random_state_range = [None, 42, 100, 200, 300, 400, 500, 600]
|
41 |
+
|
42 |
+
# Create the Gradio interface
|
43 |
+
dataset_dropdown = gr.components.Dropdown(choices=dataset_names, label="Dataset", value="iris")
|
44 |
+
max_depth_dropdown = gr.components.Dropdown(choices=max_depth_range, label="Max Depth", value=None)
|
45 |
+
min_samples_split_dropdown = gr.components.Dropdown(choices=min_samples_split_range, label="Min Samples Split", value=2)
|
46 |
+
min_samples_leaf_dropdown = gr.components.Dropdown(choices=min_samples_leaf_range, label="Min Samples Leaf", value=1)
|
47 |
+
max_features_dropdown = gr.components.Dropdown(choices=max_features_range, label="Max Features", value=None)
|
48 |
+
criterion_dropdown = gr.components.Dropdown(choices=criterion_range, label="Criterion", value="gini")
|
49 |
+
splitter_dropdown = gr.components.Dropdown(choices=splitter_range, label="Splitter", value="best")
|
50 |
+
max_leaf_nodes_dropdown = gr.components.Dropdown(choices=max_leaf_nodes_range, label="Max Leaf Nodes", value=None)
|
51 |
+
random_state_dropdown = gr.components.Dropdown(choices=random_state_range, label="Random State", value=None)
|
52 |
+
|
53 |
+
iface = gr.Interface(
|
54 |
+
fn=visualize_decision_tree,
|
55 |
+
inputs=[dataset_dropdown, max_depth_dropdown, min_samples_split_dropdown, min_samples_leaf_dropdown, max_features_dropdown, criterion_dropdown, splitter_dropdown, max_leaf_nodes_dropdown, random_state_dropdown],
|
56 |
+
outputs=gr.Image(type="pil"),
|
57 |
+
title="Decision Tree Visualization",
|
58 |
+
description="Visualize a decision tree classifier on various datasets by adjusting hyperparameters."
|
59 |
+
)
|
60 |
+
|
61 |
+
iface.launch()
|